forked from ianh/owl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathx-construct-parse-tree.h
445 lines (403 loc) · 15.4 KB
/
x-construct-parse-tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
// These "x-files" are written in a somewhat unusual way. When interpreting a
// grammar, we use the code in this file directly. When compiling a grammar, we
// turn this code into a string to include in the generated file. To avoid
// involving any external build tools, we enclose the source code in a macro
// invocation. The interpreter includes the source directly, while the compiler
// redefines the macro to return the source code as a string.
#ifndef CONSTRUCT_BODY
#define CONSTRUCT_BODY(...) __VA_ARGS__
#endif
#ifndef FINISHED_NODE_T
#define FINISHED_NODE_T void *
#endif
#ifndef FINISH_NODE
#define FINISH_NODE(rule, choice, next_sibling, slots, start, end, info) 0
#endif
#define FINISH_NODE_STRUCT(n, next_sibling, info) (FINISH_NODE((n)->rule, \
(n)->choice_index, next_sibling, (n)->slots, (n)->start_location, \
(n)->end_location, info))
#ifndef FINISH_TOKEN
#define FINISH_TOKEN(rule, next_sibling, info) 0
#endif
#ifndef RULE_T
#error Please define the RULE_T type.
#endif
#ifndef RULE_LOOKUP
#error Please define a RULE_LOOKUP(parent, slot, info) macro.
#endif
#ifndef ROOT_RULE
#error Please define a ROOT_RULE(info) macro.
#endif
#ifndef NUMBER_OF_SLOTS_LOOKUP
#error Please define a NUMBER_OF_SLOTS_LOOKUP(rule, info) macro.
#endif
#ifndef LEFT_RIGHT_OPERAND_SLOTS_LOOKUP
#error Please define a LEFT_RIGHT_OPERAND_SLOTS_LOOKUP(rule, left, right, \
operand, info) macro.
#endif
#ifndef FIXITY_ASSOCIATIVITY_PRECEDENCE_LOOKUP
#error Please define a FIXITY_ASSOCIATIVITY_PRECEDENCE_LOOKUP(\
fixity_associativity_variable, precedence_variable, rule, choice, info) macro.
#endif
#include "construct-actions.h"
CONSTRUCT_BODY
(
enum construct_fixity_associativity {
CONSTRUCT_PREFIX,
CONSTRUCT_POSTFIX,
CONSTRUCT_INFIX_LEFT,
CONSTRUCT_INFIX_RIGHT,
CONSTRUCT_INFIX_FLAT,
};
struct construct_node {
struct construct_node *next;
size_t number_of_slots;
FINISHED_NODE_T *slots;
RULE_T rule;
// In parent rule.
uint16_t slot_index;
uint16_t choice_index;
// For operators.
enum construct_fixity_associativity fixity_associativity;
int precedence;
size_t start_location;
size_t end_location;
};
struct construct_expression {
struct construct_expression *parent;
struct construct_node *first_operator;
struct construct_node *first_value;
uint32_t operand_slot_index;
uint32_t left_slot_index;
uint32_t right_slot_index;
RULE_T rule;
// In parent rule.
uint16_t slot_index;
};
enum construct_root_type {
CONSTRUCT_NORMAL_ROOT,
CONSTRUCT_EXPRESSION_ROOT,
};
struct construct_state {
enum construct_root_type root_type;
struct construct_node *under_construction;
struct construct_expression *current_expression;
struct construct_node *node_freelist;
struct construct_expression *expression_freelist;
void *info;
};
static struct construct_node *construct_node_alloc(struct construct_state *s,
RULE_T rule)
{
struct construct_node *node;
size_t number_of_slots = NUMBER_OF_SLOTS_LOOKUP(rule, s->info);
if (s->node_freelist) {
node = s->node_freelist;
s->node_freelist = node->next;
FINISHED_NODE_T *slots = node->slots;
if (number_of_slots > node->number_of_slots) {
slots = realloc(slots, number_of_slots * sizeof(FINISHED_NODE_T));
if (!slots)
abort();
}
memset(node, 0, sizeof(struct construct_node));
memset(slots, 0, number_of_slots * sizeof(FINISHED_NODE_T));
node->slots = slots;
} else {
node = calloc(1, sizeof(struct construct_node));
if (!node)
abort();
node->slots = calloc(number_of_slots, sizeof(FINISHED_NODE_T));
if (number_of_slots > 0 && !node->slots)
abort();
}
node->rule = rule;
node->number_of_slots = number_of_slots;
return node;
}
static struct construct_expression *construct_expression_alloc(struct
construct_state *s, RULE_T rule)
{
struct construct_expression *expr;
if (s->expression_freelist) {
expr = s->expression_freelist;
s->expression_freelist = expr->parent;
memset(expr, 0, sizeof(struct construct_expression));
} else {
expr = calloc(1, sizeof(struct construct_expression));
if (!expr)
abort();
}
LEFT_RIGHT_OPERAND_SLOTS_LOOKUP(rule, expr->left_slot_index,
expr->right_slot_index, expr->operand_slot_index, s->info);
expr->rule = rule;
return expr;
}
static void construct_node_free(struct construct_state *state, struct
construct_node *node)
{
node->next = state->node_freelist;
state->node_freelist = node;
}
static void construct_expression_free(struct construct_state *state, struct
construct_expression *expr)
{
expr->parent = state->expression_freelist;
state->expression_freelist = expr;
}
static bool construct_expression_should_reduce(struct construct_state *s,
struct construct_expression *expr, struct construct_node *node)
{
if (node->fixity_associativity == CONSTRUCT_POSTFIX)
return false;
struct construct_node *top = expr->first_operator;
if (!top)
return false;
return node->precedence < top->precedence ||
(node->precedence == top->precedence &&
node->fixity_associativity == CONSTRUCT_INFIX_RIGHT);
}
static void construct_expression_reduce(struct construct_state *s,
struct construct_expression *expr)
{
struct construct_node *op = expr->first_operator;
if (op->fixity_associativity == CONSTRUCT_INFIX_FLAT) {
struct construct_node *first_value = expr->first_value;
struct construct_node *last_value = first_value;
struct construct_node *last_operator = op;
FINISHED_NODE_T operand = op->slots[expr->operand_slot_index];
struct construct_node *combined_op = construct_node_alloc(s, op->rule);
combined_op->choice_index = op->choice_index;
combined_op->slot_index = op->slot_index;
combined_op->fixity_associativity = op->fixity_associativity;
combined_op->precedence = op->precedence;
// Because we're building a singly-linked list with immutable nodes,
// each pass through the list reverses its order. In order to build the
// list of operands in a particular order, we need to visit each value
// in the reverse of that order. That means we have to reverse the
// list here.
struct construct_node *reversed_values = 0;
while (last_operator &&
last_operator->choice_index == op->choice_index) {
struct construct_node *next_op = last_operator->next;
// FIXME: Combine last_operator slots together instead of just
// throwing them away. To do this, we either need a way to link
// finished nodes together or a way of storing unfinished nodes in
// slots.
construct_node_free(s, last_operator);
last_operator = next_op;
assert(last_value);
struct construct_node *next_value = last_value->next;
last_value->next = reversed_values;
reversed_values = last_value;
last_value = next_value;
}
combined_op->start_location = first_value->start_location;
combined_op->end_location = last_value->end_location;
// Now we can build the operand list in the proper order.
assert(last_value);
operand = FINISH_NODE_STRUCT(last_value, operand, s->info);
combined_op->next = last_value->next;
construct_node_free(s, last_value);
while (reversed_values) {
operand = FINISH_NODE_STRUCT(reversed_values, operand, s->info);
struct construct_node *next_value = reversed_values->next;
construct_node_free(s, reversed_values);
reversed_values = next_value;
}
expr->first_operator = last_operator;
expr->first_value = combined_op;
combined_op->slots[expr->operand_slot_index] = operand;
} else if (op->fixity_associativity == CONSTRUCT_INFIX_LEFT ||
op->fixity_associativity == CONSTRUCT_INFIX_RIGHT) {
expr->first_operator = op->next;
struct construct_node *left = expr->first_value;
struct construct_node *right = left->next;
op->next = right->next;
expr->first_value = op;
op->start_location = left->start_location;
op->end_location = right->end_location;
op->slots[expr->left_slot_index] = FINISH_NODE_STRUCT(left,
op->slots[expr->left_slot_index], s->info);
op->slots[expr->right_slot_index] = FINISH_NODE_STRUCT(right,
op->slots[expr->right_slot_index], s->info);
construct_node_free(s, left);
construct_node_free(s, right);
} else {
expr->first_operator = op->next;
struct construct_node *value = expr->first_value;
op->next = value->next;
expr->first_value = op;
if (value->start_location < op->start_location)
op->start_location = value->start_location;
if (value->end_location > op->end_location)
op->end_location = value->end_location;
op->slots[expr->operand_slot_index] = FINISH_NODE_STRUCT(value,
op->slots[expr->operand_slot_index], s->info);
construct_node_free(s, value);
}
}
static void construct_begin(struct construct_state *s, size_t offset,
enum construct_root_type type)
{
s->root_type = type;
uint32_t r = ROOT_RULE(s->info);
if (type == CONSTRUCT_EXPRESSION_ROOT) {
struct construct_expression *expr = construct_expression_alloc(s, r);
expr->parent = s->current_expression;
s->current_expression = expr;
} else {
struct construct_node *node = construct_node_alloc(s, r);
node->next = s->under_construction;
node->end_location = offset;
s->under_construction = node;
}
}
static FINISHED_NODE_T construct_finish(struct construct_state *s,
size_t offset)
{
FINISHED_NODE_T finished = 0;
if (s->root_type == CONSTRUCT_EXPRESSION_ROOT) {
struct construct_expression *expr = s->current_expression;
s->current_expression = expr->parent;
while (expr->first_operator)
construct_expression_reduce(s, expr);
struct construct_node *node = expr->first_value;
if (node) {
finished = FINISH_NODE_STRUCT(node, 0, s->info);
assert(node->next == 0);
construct_node_free(s, node);
}
construct_expression_free(s, expr);
} else {
struct construct_node *node = s->under_construction;
s->under_construction = node->next;
node->start_location = offset;
finished = FINISH_NODE_STRUCT(node, 0, s->info);
construct_node_free(s, node);
}
// Clean up memory.
while (s->node_freelist) {
struct construct_node *node = s->node_freelist;
s->node_freelist = node->next;
free(node->slots);
free(node);
}
while (s->expression_freelist) {
struct construct_expression *expr = s->expression_freelist;
s->expression_freelist = expr->parent;
free(expr);
}
return finished;
}
static void construct_action_apply(struct construct_state *s, uint16_t action,
size_t offset)
{
switch (CONSTRUCT_ACTION_GET_TYPE(action)) {
case ACTION_END_SLOT: {
struct construct_node *node = construct_node_alloc(s,
RULE_LOOKUP(s->under_construction->rule,
CONSTRUCT_ACTION_GET_SLOT(action), s->info));
node->next = s->under_construction;
node->slot_index = CONSTRUCT_ACTION_GET_SLOT(action);
node->end_location = offset;
s->under_construction = node;
break;
}
case ACTION_END_EXPRESSION_SLOT: {
struct construct_expression *expr = construct_expression_alloc(s,
RULE_LOOKUP(s->under_construction->rule,
CONSTRUCT_ACTION_GET_SLOT(action), s->info));
expr->parent = s->current_expression;
s->current_expression = expr;
expr->slot_index = CONSTRUCT_ACTION_GET_SLOT(action);
break;
}
case ACTION_BEGIN_SLOT: {
struct construct_node *node = s->under_construction;
node->start_location = offset;
s->under_construction = node->next;
FINISHED_NODE_T *finished;
finished = &s->under_construction->slots[node->slot_index];
*finished = FINISH_NODE_STRUCT(node, *finished, s->info);
construct_node_free(s, node);
break;
}
case ACTION_BEGIN_EXPRESSION_SLOT: {
struct construct_expression *expr = s->current_expression;
s->current_expression = expr->parent;
while (expr->first_operator)
construct_expression_reduce(s, expr);
FINISHED_NODE_T *finished;
finished = &s->under_construction->slots[expr->slot_index];
struct construct_node *node = expr->first_value;
if (node) {
*finished = FINISH_NODE_STRUCT(node, *finished, s->info);
assert(node->next == 0);
construct_node_free(s, node);
}
construct_expression_free(s, expr);
break;
}
case ACTION_SET_SLOT_CHOICE:
s->under_construction->choice_index =
CONSTRUCT_ACTION_GET_CHOICE(action);
break;
case ACTION_TOKEN_SLOT: {
uint16_t slot = CONSTRUCT_ACTION_GET_SLOT(action);
FINISHED_NODE_T *finished = &s->under_construction->slots[slot];
*finished = FINISH_TOKEN(RULE_LOOKUP(s->under_construction->rule, slot,
s->info), *finished, s->info);
break;
}
case ACTION_END_OPERAND: {
struct construct_expression *expr = s->current_expression;
struct construct_node *node = construct_node_alloc(s, expr->rule);
node->choice_index = CONSTRUCT_ACTION_GET_CHOICE(action);
node->end_location = offset;
node->rule = expr->rule;
node->next = s->under_construction;
s->under_construction = node;
break;
}
case ACTION_END_OPERATOR: {
struct construct_expression *expr = s->current_expression;
struct construct_node *node = construct_node_alloc(s, expr->rule);
node->choice_index = CONSTRUCT_ACTION_GET_CHOICE(action);
node->end_location = offset;
node->rule = expr->rule;
enum construct_fixity_associativity fixity_associativity = 0;
int precedence = 0;
FIXITY_ASSOCIATIVITY_PRECEDENCE_LOOKUP(fixity_associativity, precedence,
expr->rule, CONSTRUCT_ACTION_GET_CHOICE(action), s->info);
node->fixity_associativity = fixity_associativity;
node->precedence = precedence;
node->next = s->under_construction;
s->under_construction = node;
break;
}
case ACTION_BEGIN_OPERAND: {
struct construct_expression *expr = s->current_expression;
struct construct_node *node = s->under_construction;
node->start_location = offset;
s->under_construction = node->next;
node->next = expr->first_value;
expr->first_value = node;
break;
}
case ACTION_BEGIN_OPERATOR: {
struct construct_expression *expr = s->current_expression;
struct construct_node *node = s->under_construction;
node->start_location = offset;
s->under_construction = node->next;
while (construct_expression_should_reduce(s, expr, node))
construct_expression_reduce(s, expr);
node->next = expr->first_operator;
expr->first_operator = node;
if (node->fixity_associativity == CONSTRUCT_PREFIX)
construct_expression_reduce(s, expr);
break;
}
}
}
)