-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
169 lines (133 loc) · 6.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from __future__ import division, print_function
from tqdm import tqdm
import torch
from utils import shell, init_weights, set_seed
from get_args import setup, model_setup, clean_up
from dataloader import Dataset
from model import LSTMClassifier
from evaluate import Validator, Predictor
def clip_gradient(model, clip_value):
params = list(filter(lambda p: p.grad is not None, model.parameters()))
for p in params:
p.grad.data.clamp_(-clip_value, clip_value)
def train(proc_id, n_gpus, model=None, train_dl=None, validator=None,
tester=None, epochs=20, lr=0.001, log_every_n_examples=1,
weight_decay=0):
# opt = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()),
# lr=lr, momentum=0.9)
opt = torch.optim.Adadelta(
filter(lambda p: p.requires_grad, model.parameters()), lr=1.0, rho=0.9,
eps=1e-6, weight_decay=weight_decay)
for epoch in range(epochs):
if epoch - validator.best_epoch > 10:
return
model.train()
pbar = tqdm(train_dl) if proc_id == 0 else train_dl
total_loss = 0
n_correct = 0
cnt = 0
for batch in pbar:
batch_size = len(batch.tgt)
if proc_id == 0 and cnt % log_every_n_examples < batch_size:
pbar.set_description('E{:02d}, loss:{:.4f}, acc:{:.4f}, lr:{}'
.format(epoch,
total_loss / cnt if cnt else 0,
n_correct / cnt if cnt else 0,
opt.param_groups[0]['lr']))
pbar.refresh()
loss, acc = model.loss_n_acc(batch.input, batch.tgt)
total_loss += loss.item() * batch_size
cnt += batch_size
n_correct += acc
opt.zero_grad()
loss.backward()
clip_gradient(model, 1)
opt.step()
if n_gpus > 1: torch.distributed.barrier()
model.eval()
validator.evaluate(model, epoch)
# tester.evaluate(model, epoch)
if proc_id == 0:
summ = {
'Eval': '(e{:02d},train)'.format(epoch),
'loss': total_loss / cnt,
'acc': n_correct / cnt,
}
validator.write_summary(summ=summ)
validator.write_summary(epoch=epoch)
# tester.write_summary(epoch)
def bookkeep(predictor, validator, tester, args, INPUT_field):
tester.final_evaluate(predictor.model)
predictor.pred_sent(INPUT_field)
save_model_fname = validator.save_model_fname + '.e{:02d}.loss{:.4f}.torch'.format(
validator.best_epoch, validator.best_loss)
cmd = 'cp {} {}'.format(validator.save_model_fname, save_model_fname)
shell(cmd)
clean_up(args)
def run(proc_id, n_gpus, devices, args):
set_seed(args.seed)
dev_id = devices[proc_id]
if n_gpus > 1:
dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
master_ip='127.0.0.1', master_port=args.tcp_port)
world_size = n_gpus
torch.distributed.init_process_group(backend="nccl",
init_method=dist_init_method,
world_size=world_size,
rank=dev_id)
device = torch.device(dev_id)
dataset = Dataset(proc_id=proc_id, data_dir=args.save_dir,
train_fname=args.train_fname,
preprocessed=args.preprocessed, lower=args.lower,
vocab_max_size=args.vocab_max_size, emb_dim=args.emb_dim,
save_vocab_fname=args.save_vocab_fname, verbose=True, )
train_dl, valid_dl, test_dl = \
dataset.get_dataloader(proc_id=proc_id, n_gpus=n_gpus, device=device,
batch_size=args.batch_size)
validator = Validator(dataloader=valid_dl, save_dir=args.save_dir,
save_log_fname=args.save_log_fname,
save_model_fname=args.save_model_fname,
valid_or_test='valid',
vocab_itos=dataset.INPUT.vocab.itos,
label_itos=dataset.TGT.vocab.itos)
tester = Validator(dataloader=test_dl, save_log_fname=args.save_log_fname,
save_dir=args.save_dir, valid_or_test='test',
vocab_itos=dataset.INPUT.vocab.itos,
label_itos=dataset.TGT.vocab.itos)
predictor = Predictor(args.save_vocab_fname)
if args.load_model:
predictor.use_pretrained_model(args.load_model, device=device)
import pdb;
pdb.set_trace()
predictor.pred_sent(dataset.INPUT)
tester.final_evaluate(predictor.model)
return
model = LSTMClassifier(emb_vectors=dataset.INPUT.vocab.vectors,
emb_dropout=args.emb_dropout,
lstm_dim=args.lstm_dim,
lstm_n_layer=args.lstm_n_layer,
lstm_dropout=args.lstm_dropout,
lstm_combine=args.lstm_combine,
linear_dropout=args.linear_dropout,
n_linear=args.n_linear,
n_classes=len(dataset.TGT.vocab))
if args.init_xavier: model.apply(init_weights)
model = model.to(device)
args = model_setup(proc_id, model, args)
train(proc_id, n_gpus, model=model, train_dl=train_dl,
validator=validator, tester=tester, epochs=args.epochs, lr=args.lr,
weight_decay=args.weight_decay)
if proc_id == 0:
predictor.use_pretrained_model(args.save_model_fname, device=device)
bookkeep(predictor, validator, tester, args, dataset.INPUT)
def main():
args = setup()
n_gpus = args.n_gpus
devices = range(n_gpus)
if n_gpus == 1:
run(0, n_gpus, devices, args)
else:
mp = torch.multiprocessing
mp.spawn(run, args=(n_gpus, devices, args), nprocs=n_gpus)
if __name__ == '__main__':
main()