-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlineseginter.jl
91 lines (79 loc) · 2.21 KB
/
lineseginter.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
type Point
x
y
end
# Given three colinear points p, q, r, the function checks if
# point q lies on line segment 'pr'
function onSegment(p::Point, q::Point, r::Point)
if q.x>=min(p.x,r.x) && q.x<=max(p.x,r.x) &&
q.y>=min(p.y,r.y) && q.y<=max(p.y,r.x)
return true
else
return false
end
end
# To find orientation of ordered triplet (p, q, r).
# The function returns following values
# 0 --> p, q and r are colinear
# 1 --> Clockwise
# 2 --> Counterclockwise
function orientation(p::Point, q::Point, r::Point)
val = (q.y-p.y)*(r.x-q.x) - (q.x-p.x)*(r.y-q.y)
# colinear
if val==0
return 0
elseif val>0
return 1
else
return 2
end
end
# The main function that returns true if line segment 'p1q1'
# and 'p2q2' intersect.
function doIntersect(p1::Point, q1::Point, p2::Point, q2::Point)
# Find the four orientations needed for general and
# special cases
o1 = orientation(p1, q1, p2)
o2 = orientation(p1, q1, q2)
o3 = orientation(p2, q2, p1)
o4 = orientation(p2, q2, q1)
# General case
if o1!=o2 && o3!=o4
return true
end
# Special Cases
# p1, q1 and p2 are colinear and p2 lies on segment p1q1
if o1==0 && onSegment(p1, p2, q1)
return true
end
# p1, q1 and p2 are colinear and q2 lies on segment p1q1
if o2==0 && onSegment(p1, q2, q1)
return true
end
# p2, q2 and p1 are colinear and p1 lies on segment p2q2
if o3==0 && onSegment(p2, p1, q2)
return true
end
# p2, q2 and q1 are colinear and q1 lies on segment p2q2
if o4==0 && onSegment(p2, q1, q2)
return true
end
return false
end
function test()
p1 = Point(1, 1)
q1 = Point(10, 1)
p2 = Point(1, 2)
q2 = Point(10, 2)
doIntersect(p1, q1, p2, q2)?println("Yes"):println("No")
p1 = Point(10, 0)
q1 = Point(0, 10)
p2 = Point(0, 0)
q2 = Point(10, 10)
doIntersect(p1, q1, p2, q2)?println("Yes"):println("No")
p1 = Point(-5, -5)
q1 = Point(0, 0)
p2 = Point(1, 1)
q2 = Point(10, 10)
doIntersect(p1, q1, p2, q2)?println("Yes"):println("No")
end