-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodel.py
180 lines (136 loc) · 6.35 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class RandomPolicy(nn.Module):
"""Linear policy for the controller"""
def __init__(self, env):
super().__init__()
self.env = env
def forward(self, x):
return Variable(torch.FloatTensor(self.env.action_space.sample()))
class LinearPolicy(nn.Module):
"""Linear policy for the controller"""
def __init__(self, env):
super().__init__()
self.env = env
# Fully connected layers
self.out = nn.Linear(in_features=env.observation_space.shape[0],
out_features=1,
bias=False)
def forward(self, x):
x = self.out(x)
return torch.clamp(x[:, 0], self.env.action_space.low[0], self.env.action_space.high[0])
class MLPPolicy(nn.Module):
"""MLP Policy for the controller"""
def __init__(self, env, hidden_size=50):
super().__init__()
self.env = env
self.hidden_size = hidden_size
# Fully connected layers
self.fc1 = nn.Linear(in_features=env.observation_space.shape[0]+1, # [x, dx, polex, poley, dtheta]
out_features=self.hidden_size,
bias=True)
self.out = nn.Linear(in_features=self.hidden_size,
out_features=1, # 1D continuous action space [mu, log-space of sigma]
bias=True)
def forward(self, x):
polex = torch.sin(x[:, 2])*0.6
poley = torch.cos(x[:, 2])*0.6
x = torch.stack([x[:, 0], x[:, 1], x[:, 0] + polex, poley, x[:, 3]], 1)
x = F.relu(self.fc1(x))
x = self.out(x)
#mu = x[:, 0]
#std = F.sigmoid(x[:, 1]) # Softplus vs sigmoid
#z = Variable(torch.randn(mu.size()))
#action = mu + std*z ###### For now, try deterministic actions
x = 9/8*torch.sin(x) + 1/8*torch.sin(3*x)
#x = torch.tanh(x)
x = x*self.env.action_space.high[0]
#x[:, 0] = torch.clamp(x[:, 0], self.env.action_space.low[0], self.env.action_space.high[0])
return x[:, 0]
class DynamicsModel(nn.Module):
"""Learning dynamics model via regression"""
def __init__(self, env, hidden_size=200, drop_prob=0.0):
super().__init__()
self.hidden_size = hidden_size
self.drop_prob = drop_prob
# Flag for sampling parameters
self.sampling = False
# Fix the random mask for dropout, each batch contains K particles
self.mask1 = None
self.mask2 = None
# Fully connected layer
self.fc1 = nn.Linear(in_features=env.observation_space.shape[0]+env.action_space.shape[0], # State + Action
out_features=self.hidden_size,
bias=True)
self.fc2 = nn.Linear(in_features=self.hidden_size,
out_features=self.hidden_size,
bias=True)
self.out = nn.Linear(in_features=self.hidden_size,
out_features=env.observation_space.shape[0], # Next state
bias=True)
def forward(self, x, delta_target=False, training=True):
# Check if drop mask with correct dimension
if self.sampling:
if self.mask1.size()[0] != x.size()[0] or self.mask2.size()[0] != x.size()[0]:
raise ValueError('Dimension of fixed masks must match the batch size.')
state = x.clone()[:, :-1] # CartPoleSwingUp, without action
x = F.selu(self.fc1(x)) # try sigmoid as DeepPILCO paper
if self.sampling:
x = x*self.mask1
else:
x = F.dropout(x, p=self.drop_prob, training=training)
x = F.selu(self.fc2(x)) # try sigmoid as DeepPILCO paper
if self.sampling:
x = x*self.mask2
else:
x = F.dropout(x, p=self.drop_prob, training=training)
x = self.out(x)
if delta_target: # return difference in states, for training
x = x
else: # return next states as s + delta_s
x = state + x
return x
def set_sampling(self, sampling=None, batch_size=None):
if sampling is None:
raise ValueError('Sampling cannot be None.')
self.sampling = sampling
if self.sampling:
# Sample dropout random masks
self.mask1 = Variable(torch.bernoulli(torch.zeros(batch_size, self.hidden_size).fill_(1 - self.drop_prob))).cuda()
self.mask2 = Variable(torch.bernoulli(torch.zeros(batch_size, self.hidden_size).fill_(1 - self.drop_prob))).cuda()
# Rescale by 1/p to maintain output magnitude
self.mask1 /= (1 - self.drop_prob)
self.mask2 /= (1 - self.drop_prob)
class TrueDynamics(nn.Module):
def __init__(self, env, hidden_size=200, drop_prob=0.0):
super().__init__()
self.env = env
self.hidden_size = hidden_size
self.drop_prob = drop_prob
self.mask1 = None
def forward(self, x):
th = x[:, 0]
thdot = x[:, 1]
u = torch.clamp(x[:, 2], -3, 3)
g = 9.82
m = 1.
l = 1.
dt = 0.08
newthdot = thdot + (-3*g/(2*l)*torch.sin(th + np.pi) + 3./(m*l**2)*u)*dt
newth = th + newthdot*dt
newthdot = torch.clamp(newthdot, -8, 8)
return torch.stack([newth, newthdot], 1)
def set_sampling(self, sampling=None, batch_size=None):
if sampling is None:
raise ValueError('Sampling cannot be None.')
self.sampling = sampling
if self.sampling:
# Sample dropout random masks
self.mask1 = Variable(torch.bernoulli(torch.zeros(batch_size, self.hidden_size).fill_(1 - self.drop_prob))).cuda()
self.mask2 = Variable(torch.bernoulli(torch.zeros(batch_size, self.hidden_size).fill_(1 - self.drop_prob))).cuda()
# Rescale by 1/p to maintain output magnitude
self.mask1 /= (1 - self.drop_prob)
self.mask2 /= (1 - self.drop_prob)