As atividades realizadas ao longo desse projeto foram assistidas e apresentadas no BootCamp de Ciência de Dados promovido pelo grupo Avanti-Atlântico 2024.2.
É desejável que também se insira um graphical abstract.
Esse template foi inicialmente baseado no template de ciência de dados do cookiecutter, mas ao longo do tempo várias modificações foram sendo realizadas. Atualmente o template tem as seguintes características:
- Utilização do arquivo
pyproject.toml
como centralizador de dependências; - Configuração para criação de aplicação
streamlit
; - Utilização de jupyter notebooks para arquivos de análise;
- Documentação com o mkdocs (material design theme)
.
├── data/ # Diretório contendo todos os arquivos de dados
│ ├── external/ # Arquivos de dados de fontes externas
│ ├── interim/ # Arquivos de dados intermediários
│ ├── processed/ # Arquivos de dados processados
│ └── raw/ # Arquivos de dados originais, imutáveis
├── docs/ # Documentação gerada através da biblioteca mkdocs
├── models/ # Modelos treinados e serializados, predições ou resumos de modelos
├── notebooks/ # Diretório contendo todos os notebooks utilizados nos passos
├── references/ # Dicionários de dados, manuais e todo o material exploratório
├── src/ # Código fonte utilizado nesse projeto
│ ├── data/ # Classes e funções utilizadas para download e processamento de dados
│ ├── deployment/ # Classes e funções utilizadas para implantação do modelo
│ └── model/ # Classes e funções utilizadas para modelagem
├── app.py # Arquivo com o código da aplicação do streamlit
├── Procfile # Arquivo de configuração do heroku
├── pyproject.toml # Arquivo de dependências para reprodução do projeto
├── poetry.lock # Arquivo com sub-dependências do projeto principal
├── README.md # Informações gerais do projeto
└── tasks.py # Arquivo com funções para criação de tarefas utilizadas pelo invoke