-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_data.py
213 lines (181 loc) · 9.3 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import os
import numpy as np
from utils.data_utils import check_extension, save_dataset
from utils.distributions import gaussian_mixture_batch, poly_batch, diag_batch, link_batch
def generate_tsp_data(dataset_size, tsp_size, distribution='unif'):
# TSPLib distribution
if distribution == 'tsplib':
tsplib = []
for filename in os.listdir('data/tsplib'):
if filename.endswith(".npy") and not filename.endswith("sol.npy"):
instance = np.load(os.path.join('data/tsplib', filename))
if instance.shape[0] >= 150:
tsplib.append(instance)
result = np.zeros((dataset_size, tsp_size, 2))
for i in range(dataset_size):
instance = tsplib[i % len(tsplib)]
result[i] = instance[np.random.choice(instance.shape[0], tsp_size, replace=False)]
return result.tolist()
# Gaussian mixture distribution
if distribution == 'gmm':
cdist_list = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
split_size = dataset_size // len(cdist_list)
res = []
for cdist in cdist_list:
res.append(gaussian_mixture_batch(split_size, tsp_size, cdist))
return np.concatenate(res, axis=0).tolist()
# Polygon distribution
if distribution == 'poly':
n_corners_list = [3, 4, 5, 6, 7]
split_size = dataset_size // len(n_corners_list)
res = []
for n_corners in n_corners_list:
res.append(poly_batch(split_size, tsp_size, n_corners))
return np.concatenate(res, axis=0).tolist()
# Diagonal distribution
if distribution == 'diag':
dist_list = [1, 2, 3, 4, 5]
split_size = dataset_size // len(dist_list)
res = []
for dist in dist_list:
res.append(diag_batch(split_size, tsp_size, dist))
return np.concatenate(res, axis=0).tolist()
# Link distribution
if distribution == 'link':
return link_batch(dataset_size, tsp_size).tolist()
# Uniform distribution, default
return np.random.uniform(size=(dataset_size, tsp_size, 2)).tolist()
def generate_vrp_data(dataset_size, vrp_size):
CAPACITIES = {
10: 20.,
20: 30.,
50: 40.,
100: 50.
}
return list(zip(
np.random.uniform(size=(dataset_size, 2)).tolist(), # Depot location
np.random.uniform(size=(dataset_size, vrp_size, 2)).tolist(), # Node locations
np.random.randint(1, 10, size=(dataset_size, vrp_size)).tolist(), # Demand, uniform integer 1 ... 9
np.full(dataset_size, CAPACITIES[vrp_size]).tolist() # Capacity, same for whole dataset
))
def generate_op_data(dataset_size, op_size, prize_type='const'):
depot = np.random.uniform(size=(dataset_size, 2))
loc = np.random.uniform(size=(dataset_size, op_size, 2))
# Methods taken from Fischetti et al. 1998
if prize_type == 'const':
prize = np.ones((dataset_size, op_size))
elif prize_type == 'unif':
prize = (1 + np.random.randint(0, 100, size=(dataset_size, op_size))) / 100.
else: # Based on distance to depot
assert prize_type == 'dist'
prize_ = np.linalg.norm(depot[:, None, :] - loc, axis=-1)
prize = (1 + (prize_ / prize_.max(axis=-1, keepdims=True) * 99).astype(int)) / 100.
# Max length is approximately half of optimal TSP tour, such that half (a bit more) of the nodes can be visited
# which is maximally difficult as this has the largest number of possibilities
MAX_LENGTHS = {
20: 2.,
50: 3.,
100: 4.
}
return list(zip(
depot.tolist(),
loc.tolist(),
prize.tolist(),
np.full(dataset_size, MAX_LENGTHS[op_size]).tolist() # Capacity, same for whole dataset
))
def generate_pctsp_data(dataset_size, pctsp_size, penalty_factor=3):
depot = np.random.uniform(size=(dataset_size, 2))
loc = np.random.uniform(size=(dataset_size, pctsp_size, 2))
# For the penalty to make sense it should be not too large (in which case all nodes will be visited) nor too small
# so we want the objective term to be approximately equal to the length of the tour, which we estimate with half
# of the nodes by half of the tour length (which is very rough but similar to op)
# This means that the sum of penalties for all nodes will be approximately equal to the tour length (on average)
# The expected total (uniform) penalty of half of the nodes (since approx half will be visited by the constraint)
# is (n / 2) / 2 = n / 4 so divide by this means multiply by 4 / n,
# However instead of 4 we use penalty_factor (3 works well) so we can make them larger or smaller
MAX_LENGTHS = {
20: 2.,
50: 3.,
100: 4.
}
penalty_max = MAX_LENGTHS[pctsp_size] * (penalty_factor) / float(pctsp_size)
penalty = np.random.uniform(size=(dataset_size, pctsp_size)) * penalty_max
# Take uniform prizes
# Now expectation is 0.5 so expected total prize is n / 2, we want to force to visit approximately half of the nodes
# so the constraint will be that total prize >= (n / 2) / 2 = n / 4
# equivalently, we divide all prizes by n / 4 and the total prize should be >= 1
deterministic_prize = np.random.uniform(size=(dataset_size, pctsp_size)) * 4 / float(pctsp_size)
# In the deterministic setting, the stochastic_prize is not used and the deterministic prize is known
# In the stochastic setting, the deterministic prize is the expected prize and is known up front but the
# stochastic prize is only revealed once the node is visited
# Stochastic prize is between (0, 2 * expected_prize) such that E(stochastic prize) = E(deterministic_prize)
stochastic_prize = np.random.uniform(size=(dataset_size, pctsp_size)) * deterministic_prize * 2
return list(zip(
depot.tolist(),
loc.tolist(),
penalty.tolist(),
deterministic_prize.tolist(),
stochastic_prize.tolist()
))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--filename", help="Filename of the dataset to create (ignores datadir)")
parser.add_argument("--data_dir", default='data', help="Create datasets in data_dir/problem (default 'data')")
parser.add_argument("--name", type=str, required=True, help="Name to identify dataset")
parser.add_argument("--problem", type=str, default='all',
help="Problem, 'tsp', 'vrp', 'pctsp' or 'op_const', 'op_unif' or 'op_dist'"
" or 'all' to generate all")
parser.add_argument('--data_distribution', type=str, default='all',
help="Distributions to generate for problem, default 'all'.")
parser.add_argument("--dataset_size", type=int, default=10000, help="Size of the dataset")
parser.add_argument('--graph_sizes', type=int, nargs='+', default=[20, 50, 100],
help="Sizes of problem instances (default 20, 50, 100)")
parser.add_argument("-f", action='store_true', help="Set true to overwrite")
parser.add_argument('--seed', type=int, default=1234, help="Random seed")
opts = parser.parse_args()
assert opts.filename is None or (len(opts.problems) == 1 and len(opts.graph_sizes) == 1), \
"Can only specify filename when generating a single dataset"
distributions_per_problem = {
'tsp': ['unif', 'tsplib', 'gmm', 'poly', 'diag', 'link'],
'vrp': [None],
'pctsp': [None],
'op': ['const', 'unif', 'dist']
}
if opts.problem == 'all':
problems = distributions_per_problem
else:
problems = {
opts.problem:
distributions_per_problem[opts.problem]
if opts.data_distribution == 'all'
else [opts.data_distribution]
}
for problem, distributions in problems.items():
for distribution in distributions or [None]:
for graph_size in opts.graph_sizes:
datadir = os.path.join(opts.data_dir, problem)
os.makedirs(datadir, exist_ok=True)
if opts.filename is None:
filename = os.path.join(datadir, "{}{}{}_{}_seed{}.pkl".format(
problem,
"_{}".format(distribution) if distribution is not None else "",
graph_size, opts.name, opts.seed))
else:
filename = check_extension(opts.filename)
assert opts.f or not os.path.isfile(check_extension(filename)), \
"File already exists! Try running with -f option to overwrite."
np.random.seed(opts.seed)
if problem == 'tsp':
dataset = generate_tsp_data(opts.dataset_size, graph_size, distribution=distribution)
elif problem == 'vrp':
dataset = generate_vrp_data(
opts.dataset_size, graph_size)
elif problem == 'pctsp':
dataset = generate_pctsp_data(opts.dataset_size, graph_size)
elif problem == "op":
dataset = generate_op_data(opts.dataset_size, graph_size, prize_type=distribution)
else:
assert False, "Unknown problem: {}".format(problem)
print(f"Saving dataset to {filename}")
save_dataset(dataset, filename)