Skip to content

Generative-model-based curriculum design for improved distribution robustness with deep RL methods on the Travelling Salesman Problem (TSP)

License

Notifications You must be signed in to change notification settings

ML72/Generative-Model-TSP

Repository files navigation

Generative Model TSP

This repository contains code for an adapted version of ACCEL, an algorithm based on dual curriculum design, for solving the Traveling Salesman Problem. We work off of the codebase for the Attention, Learn to Solve Routing Problems! paper, which uses an attention-based model trained with REINFORCE on a greedy rollout baseline.

TSP100

Environment Setup

To install dependencies with conda, run the following to create an environment named generative_tsp:

conda env create --file environment.yml
  • Note: If you don't have cuda available, then go to the environment.yml file and comment out the line containing pytorch-cuda.

Don't forget to activate the environment:

conda activate generative_tsp

Alternatively, dependencies can be installed manually:

To work with the Concorde solver, which we treat as an oracle, run the following command. Note that only concorde_baseline.py uses Concorde; the rest of the code still runs smoothly even if Concorde is not installed. We've found success installing Concorde on Linux but not Windows.

pip install "pyconcorde @ git+https://github.com/jvkersch/pyconcorde"

Usage

Generating Data

Training data is generated on the fly. To generate validation and test data (same as used in the paper) for the TSP:

python generate_data.py --problem tsp --name validation --seed 1234
python generate_data.py --problem tsp --name test --seed 1234
  • Note, for the command above, if the files already exist, then including the -f flag will overwrite these files.
  • If unzipping data from tsplib.zip, make sure the file path is correct and there is no redundant folders created during the unzipping process.

Training

For training TSP instances using rollout as a REINFORCE baseline:

python run.py --problem tsp --graph_size <NODE-COUNT> --baseline rollout --epoch_size <EPOCH-SIZE> --batch_size <BATCH-SIZE> --n_epochs <EPOCH-COUNT> --checkpoint_epochs <CHECKPOINT-FREQUENCY> --run_name <NAME>

Example usage:

python run.py --problem tsp --graph_size 100 --baseline rollout --epoch_size 4096 --batch_size 128 --n_epochs 100 --checkpoint_epochs 10 --run_name tsp100_dcd_global

Multiple GPUs

By default, training will happen on all available GPUs. To disable CUDA at all, add the flag --no_cuda. Set the environment variable CUDA_VISIBLE_DEVICES to only use specific GPUs:

CUDA_VISIBLE_DEVICES=2,3 python run.py 

Note that using multiple GPUs has limited efficiency for small problem sizes (up to 50 nodes).

Warm start

You can initialize a run using a pretrained model by using the --load_path option:

python run.py --graph_size 100 --load_path pretrained/tsp_100/epoch-99.pt

The --load_path option can also be used to load an earlier run, in which case also the optimizer state will be loaded:

python run.py --graph_size 20 --load_path 'outputs/tsp_20/tsp20_rollout_{datetime}/epoch-0.pt'

The --resume option can be used instead of the --load_path option, which will try to resume the run, e.g. load additionally the baseline state, set the current epoch/step counter and set the random number generator state.

Evaluation

For evaluating a model (by default the last epoch in the folder is used if no epoch is specified):

python eval.py <DATA-FILE> --model <MODEL-FILE> --decode_strategy greedy --eval_batch_size <BATCH-SIZE>

Example usage:

python eval.py data/tsp/tsp_unif100_test_seed1234.pkl --model outputs/tsp_100/tsp100_dcd_global --decode_strategy greedy --eval_batch_size 128

Example using a specific epoch and saving to a specific result name (note that setting --width 0 is necessary for using -o):

python eval.py data/tsp/tsp_unif100_test_seed1234.pkl --model outputs/tsp_100/tsp100_default/epoch-50.pt -o results/tsp/tsp20_test_seed1234_epochs/tsp100_default_epoch-50.pkl --width 0 --decode_strategy greedy --eval_batch_size 128

To use a "oracle baseline" for computing gap, add the following flag:

--oracle_baseline <BASELINE-FILE>

Running concorde_baseline.py can create such a baseline file; note that pyconcorde needs to have been correctly installed to run without error:

python concorde_baseline.py --data_path <DATA-FILE>

Sampling

To report the best of 1280 sampled solutions, use

python eval.py data/tsp/tsp_unif20_test_seed1234.pkl --model pretrained/tsp_20 --decode_strategy sample --width 1280 --eval_batch_size 1

Beam Search can be used using --decode_strategy bs --width <BEAM-SIZE>.

Baselines

Baselines for different problems are within the corresponding folders and can be ran (on multiple datasets at once) as follows

python -m problems.tsp.tsp_baseline farthest_insertion data/tsp/tsp_unif20_test_seed1234.pkl data/tsp/tsp_unif50_test_seed1234.pkl data/tsp/tsp_unif100_test_seed1234.pkl

To run baselines, you need to install Compass by running the install_compass.sh script from within the problems/op directory and Concorde using the install_concorde.sh script from within problems/tsp. LKH3 should be automatically downloaded and installed when required. To use Gurobi, obtain a (free academic) license and follow the installation instructions.

Help

To view valid command syntax:

python run.py -h
python eval.py -h

About

Generative-model-based curriculum design for improved distribution robustness with deep RL methods on the Travelling Salesman Problem (TSP)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published