Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add cross product operator #818

Merged
merged 6 commits into from
Jan 21, 2025
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions docs_input/api/linalg/other/cross.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
.. _cross_func:

cross
#####

Cross product of two operators with last dimension 2 or 3.

Inputs `A` and `B` may be higher rank than 1, in which case batching will occur
on all dimensions besides the last dimension.

.. doxygenfunction:: cross(const OpA &A, const OpB &B)

Examples
~~~~~~~~

.. literalinclude:: ../../../../test/00_Operator/OperatorTests.cu
:language: cpp
:start-after: example-begin cross-test-1
:end-before: example-end cross-test-1
:dedent:
200 changes: 200 additions & 0 deletions include/matx/operators/cross.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
////////////////////////////////////////////////////////////////////////////////
// BSD 3-Clause License
//
// COpBright (c) 2021, NVIDIA Corporation
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above cOpBright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above cOpBright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the cOpBright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COpBRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COpBRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/////////////////////////////////////////////////////////////////////////////////

#pragma once

#include "matx/core/type_utils.h"
#include "matx/operators/base_operator.h"

namespace matx
{

/**
* Returns cross product of two operators when the last dimensions are 2 or 3
*/
namespace detail {
template <typename OpA, typename OpB>
class CrossOp : public BaseOp<CrossOp<OpA, OpB>>
{
private:
typename detail::base_type_t<OpA> a_;
typename detail::base_type_t<OpB> b_;

static constexpr int32_t out_rank = cuda::std::max(OpA::Rank(), OpB::Rank());
static constexpr int32_t min_rank = cuda::std::min(OpA::Rank(), OpB::Rank());

cuda::std::array<index_t, out_rank> out_dims_;

//helpers to simplify later checks
bool isA2D_ = a_.Size(a_.Rank() - 1) == 2 ? true : false;
bool isB2D_ = b_.Size(b_.Rank() - 1) == 2 ? true : false;

public:
using matxop = bool;
using value_type = typename OpA::value_type;

__MATX_INLINE__ std::string str() const { return "cross()"; }
__MATX_INLINE__ CrossOp(const OpA &A, const OpB &B) : a_(A), b_(B) {
MATX_STATIC_ASSERT_STR(OpA::Rank() >= 1 && OpB::Rank() >= 1, matxInvalidDim, "Operators to cross() must have rank GTE one.");

//dims other than the last are batched, so count R-->L, beginning one-left of the right-most dim
for (int32_t i = 1; i < min_rank; i++) {
MATX_ASSERT_STR(a_.Size(a_.Rank() - 1 - i) == b_.Size(b_.Rank() - 1 - i), matxInvalidSize, "A and B tensors must match batch sizes.");
}

MATX_ASSERT_STR(a_.Size(a_.Rank() - 1) == 3 || a_.Size(a_.Rank() - 1) == 2, matxInvalidSize, "Last dimension of A must have size 2 or 3.")
MATX_ASSERT_STR(b_.Size(b_.Rank() - 1) == 3 || b_.Size(b_.Rank() - 1) == 2, matxInvalidSize, "Last dimension of B must have size 2 or 3.")

for (int32_t i = 0; i < out_rank - 1; i++) {
if (i < a_.Rank()){
out_dims_[i] = a_.Size(i);
}
else{
out_dims_[i] = b_.Size(i);
}
}

//mimic NumPy cross as closely as possible
if(isA2D_ && isB2D_){
out_dims_[out_dims_.size() - 1] = 1;
}
else{
out_dims_[out_dims_.size() - 1] = 3;
}
};

template <typename... Is>
__MATX_INLINE__ __MATX_DEVICE__ __MATX_HOST__ decltype(auto) operator()(Is... indices) const
{
cuda::std::array idx{indices...};
auto idxOut = idx[idx.size() - 1];

//create references to individual slices for ease of notation
cuda::std::array idx0(idx);
cuda::std::array idx1(idx);
cuda::std::array idx2(idx);

idx0[idx0.size() - 1] = 0LL;
idx1[idx1.size() - 1] = 1LL;
idx2[idx2.size() - 1] = 2LL;

auto a0 = get_value(a_, idx0);
auto a1 = get_value(a_, idx1);

auto b0 = get_value(b_, idx0);
auto b1 = get_value(b_, idx1);

//lots of if-elses, but similar to numpy implementation

if (idxOut == 2 || (isA2D_ && isB2D_)){
return a0 * b1 - a1 * b0;
}

if (!isA2D_ && !isB2D_){
auto a2 = get_value(a_, idx2);
auto b2 = get_value(b_, idx2);
if (idxOut == 0){
return a1 * b2 - a2 * b1;
}
//idxOut == 1
return a2 * b0 - a0 * b2;

}
else if (isA2D_ && !isB2D_){
auto b2 = get_value(b_, idx2);
if (idxOut == 0){
return a1 * b2;
}
//idxOut == 1
return -a0 * b2;
}
else{// !isA2D_ && isB2D_, case of both 2D are covered in the first if statement
auto a2 = get_value(a_, idx2);
if (idxOut == 0){
return -a2 * b1;
}
//idxOut == 1
return a2 * b0;
}

}
static __MATX_INLINE__ constexpr __MATX_HOST__ __MATX_DEVICE__ int32_t Rank()
{
return out_rank;
}

constexpr __MATX_INLINE__ __MATX_HOST__ __MATX_DEVICE__ index_t Size([[maybe_unused]] int dim) const
{
return out_dims_[dim];
}

template <typename ShapeType, typename Executor>
__MATX_INLINE__ void PreRun(ShapeType &&shape, Executor &&ex) const noexcept
{
if constexpr (is_matx_op<OpA>()) {
a_.PreRun(std::forward<ShapeType>(shape), std::forward<Executor>(ex));
}

if constexpr (is_matx_op<OpB>()) {
b_.PreRun(std::forward<ShapeType>(shape), std::forward<Executor>(ex));
}
}

template <typename ShapeType, typename Executor>
__MATX_INLINE__ void PostRun(ShapeType &&shape, Executor &&ex) const noexcept
{
if constexpr (is_matx_op<OpA>()) {
a_.PostRun(std::forward<ShapeType>(shape), std::forward<Executor>(ex));
}

if constexpr (is_matx_op<OpB>()) {
b_.PostRun(std::forward<ShapeType>(shape), std::forward<Executor>(ex));
}
}
};
}


/**
* @brief Evaluate a cross product
*
* @tparam OpA Type of input tensor 1
* @tparam OpB Type of input tensor 2
* @param OpA Input tensor 1
* @param OpB Input tensor 2
* @return cross operator
*/
template <typename OpA, typename OpB>
__MATX_INLINE__ auto cross(const OpA &A, const OpB &B) {
return detail::CrossOp(A, B);
}
} // end namespace matx
1 change: 1 addition & 0 deletions include/matx/operators/operators.h
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,7 @@
#include "matx/operators/comma.h"
#include "matx/operators/corr.h"
#include "matx/operators/cov.h"
#include "matx/operators/cross.h"
#include "matx/operators/cumsum.h"
#include "matx/operators/diag.h"
#include "matx/operators/dct.h"
Expand Down
61 changes: 61 additions & 0 deletions test/00_operators/OperatorTests.cu
Original file line number Diff line number Diff line change
Expand Up @@ -2012,6 +2012,67 @@ TYPED_TEST(OperatorTestsFloatAllExecs, Toeplitz)
MATX_EXIT_HANDLER();
}

TYPED_TEST(OperatorTestsFloatNonComplexAllExecs, Cross)
{
MATX_ENTER_HANDLER();
using TestType = cuda::std::tuple_element_t<0, TypeParam>;
using ExecType = cuda::std::tuple_element_t<1, TypeParam>;
ExecType exec{};
auto pb = std::make_unique<detail::MatXPybind>();
// Half precision needs a bit more tolerance when compared to fp32
float thresh = 0.01f;
if constexpr (is_matx_half_v<TestType>) {
thresh = 0.02f;
}

{//batched 4 x 3
pb->InitAndRunTVGenerator<TestType>("00_operators", "cross_operator", "run", {4, 3});

auto a = make_tensor<TestType>({4, 3});
auto b = make_tensor<TestType>({4, 3});
auto out = make_tensor<TestType>({4, 3});

pb->NumpyToTensorView(a, "a");
pb->NumpyToTensorView(b, "b");

// example-begin cross-test-1
(out = cross(a, b)).run(exec);
// example-end cross-test-1
exec.sync();
MATX_TEST_ASSERT_COMPARE(pb, out, "out", thresh);
}

{//non-batched 3
pb->InitAndRunTVGenerator<TestType>("00_operators", "cross_operator", "run", {3});
auto a = make_tensor<TestType>({3});
auto b = make_tensor<TestType>({3});
auto out = make_tensor<TestType>({3});

pb->NumpyToTensorView(a, "a");
pb->NumpyToTensorView(b, "b");

(out = cross(a, b)).run(exec);
exec.sync();
MATX_TEST_ASSERT_COMPARE(pb, out, "out", thresh);
}

{//non-batched 2
pb->InitAndRunTVGenerator<TestType>("00_operators", "cross_operator", "run", {2});
auto a = make_tensor<TestType>({2});
auto b = make_tensor<TestType>({2});
auto out = make_tensor<TestType>({1});

pb->NumpyToTensorView(a, "a");
pb->NumpyToTensorView(b, "b");

(out = cross(a, b)).run(exec);
exec.sync();
MATX_TEST_ASSERT_COMPARE(pb, out, "out", thresh);
}

MATX_EXIT_HANDLER();
}

TYPED_TEST(OperatorTestsNumericNonComplexAllExecs, OperatorFuncs)
{
MATX_ENTER_HANDLER();
Expand Down
20 changes: 20 additions & 0 deletions test/test_vectors/generators/00_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,27 @@ def run(self) -> Dict[str, np.array]:
'out': np.polyval(c, x),
}

class cross_operator:
def __init__(self, dtype: str, size: List[int]):
self.size = size
self.dtype = dtype
pass

def run(self) -> Dict[str, np.array]:
a = matx_common.randn_ndarray(self.size, self.dtype)
b = matx_common.randn_ndarray(self.size, self.dtype)

#for the result so that the rank matches that of the MatX output
result = np.cross(a, b)
if len(result.shape) == 0:
result = np.expand_dims(result, axis=0)

return {
'a': a,
'b': b,
'out': result
}

class kron_operator:
def __init__(self, dtype: str, size: List[int]):
pass
Expand Down