Skip to content

ak-ty/autoencoding_vi_for_topic_models

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Autoencoding Variational Inference for Topic Models

UPDATE

  1. As pointed out by @govg, this code depends on a slightly older version of TF. I will try to update it soon, in the meantime you can look up a quick fix here for working with newer version of TF or (3) and (2) below if you'd rather prefer Keras or PyTorch.

  2. @nzw0301 has implemented a Keras version of prodLDA.

  3. @hyqneuron recently implemented a PyTorch version of AVITM. So check out his repo.

  4. Added topic_prop method to both the models. Softmax the output of this method to get the topic proportions.


Code for the ICLR 2017 paper: Autoencoding Variational Inference for Topic Models



This is a tensorflow implementation for both of the Autoencoded Topic Models mentioned in the paper.

To run the prodLDA model in the 20Newgroup dataset:

CUDA_VISIBLE_DEVICES=0 python run.py -m prodlda -f 100 -s 100 -t 50 -b 200 -r 0.002 -e 200

Similarly for NVLDA:

CUDA_VISIBLE_DEVICES=0 python run.py -m nvlda -f 100 -s 100 -t 50 -b 200 -r 0.005 -e 300

Check run.py for other options.

About

Tensorflow implementation for prodLDA and NVLDA.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%