Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(raw_vehicle_cmd_converter): add contents of vehicle_adaptor #9759

Open
wants to merge 3 commits into
base: main
Choose a base branch
from

run pre-commit

aa1778b
Select commit
Loading
Failed to load commit list.
Open

feat(raw_vehicle_cmd_converter): add contents of vehicle_adaptor #9759

run pre-commit
aa1778b
Select commit
Loading
Failed to load commit list.
CodeScene Delta Analysis / CodeScene Cloud Delta Analysis (main) failed Dec 25, 2024 in 1m 52s

CodeScene PR Check

Code Health Quality Gates: FAILED

Change in average Code Health of affected files: -4.48 (10.00 -> 5.52)

  • Declining Code Health: 325 findings(s) 🚩

View detailed results in CodeScene

Details

🚩 Declining Code Health (highest to lowest):

  • Complex Method vehicle_adaptor_compensator.cpp: VehicleAdaptor::get_adjusted_inputs
  • Complex Method python_simulator.py: PythonSimulator.drive_sim
  • Code Duplication vehicle_adaptor_compensator.cpp
  • Complex Method add_data_from_csv.py: add_data_from_csv.add_data_from_csv
  • Code Duplication training_utils.py
  • Complex Method inputs_schedule_predictor_NN.py: AddDataFromCsv.add_data_from_csv
  • Complex Method accel_brake_map_calibrator.py: AddDataFromCSV.add_data_from_csv
  • Complex Method training_utils.py: plot_relearned_vs_original_prediction_error
  • Complex Method vehicle_adaptor_compensator.cpp: AdaptorILQR::calc_forward_trajectory_with_cost
  • Complex Method vehicle_adaptor_compensator.cpp: AdaptorILQR::compute_ilqr_coefficients
  • Brain Method accel_brake_map_calibrator.py: CalibratorByNeuralNetwork.train_calibrator_NN
  • Brain Method accel_brake_map_calibrator.py: DummyDataGenerator.add_dummy_data
  • Brain Method nominal_ilqr.cpp: calc_forward_trajectory_with_cost
  • Code Duplication driving_log_plotter.py
  • Brain Method python_simulator.py: PythonSimulator.drive_sim
  • Brain Method run_auto_parameter_change_sim.py: run_parameter_change_sim
  • Brain Method run_auto_parameter_change_sim_with_single_model.py: run_parameter_change_sim
  • Low Cohesion data_collection_utils.py
  • Brain Method inputs_schedule_predictor_NN.py: TrainInputsSchedulePredictorNN.train_model
  • Low Cohesion training_utils.py
  • Deep, Nested Complexity python_simulator.py: PythonSimulator.drive_sim
  • Complex Method mpc_straight_line_course.py: create_straight_line_course
  • Complex Method NN_model_evaluator.py: NNModelEvaluator.evaluate
  • Bumpy Road Ahead add_data_from_csv.py: add_data_from_csv.add_data_from_csv
  • Large Method convert_model_to_csv.py: convert_model_to_csv
  • Large Method training_utils.py: TrainErrorPredictionNNWithOfflineData.get_loss
  • Bumpy Road Ahead python_simulator.py: PythonSimulator.drive_sim
  • Code Duplication nominal_ilqr.cpp
  • Code Duplication vehicle_adaptor_utils.cpp
  • Complex Method vehicle_adaptor_compensator.cpp: AdaptorILQR::calc_inputs_ref_info
  • Bumpy Road Ahead vehicle_adaptor_compensator.cpp: VehicleAdaptor::get_adjusted_inputs
  • Complex Method nominal_ilqr.cpp: compute_ilqr_coefficients
  • Complex Method nominal_ilqr.cpp: calc_forward_trajectory_with_cost
  • Complex Method vehicle_adaptor_compensator.cpp: VehicleAdaptor::set_params
  • Complex Method vehicle_adaptor_compensator.cpp: TrainedDynamics::F_with_model_diff
  • Complex Method train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.relearn_model
  • Complex Method accel_brake_map_calibrator.py: CalibratorByEnsembleNN.calibrate_by_ensemble_NN
  • Complex Conditional python_simulator.py: PythonSimulator.drive_sim
  • Complex Conditional training_utils.py: TrainErrorPredictionNNFunctions.get_sequence_data
  • Complex Conditional training_utils.py: TrainErrorPredictionNNWithOfflineData.get_sequence_data
  • Complex Method train_error_prediction_NN.py: train_error_prediction_NN.relearn_model
  • Complex Method data_collection_utils.py: FigureEight.get_trajectory_points
  • Large Method transform_vehicle_adaptor_model.cpp: TransformModelToEigen::error_prediction_with_diff
  • Complex Conditional pure_pursuit_gain_updater.py: pure_pursuit_gain_updater.get_acc_gain_scaling
  • Large Method convert_model_to_csv.py: convert_inputs_schedule_model_to_csv
  • Complex Method train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.set_offline_data
  • Large Method error_prediction_NN.py: ErrorPredictionNN.forward
  • Large Method inputs_schedule_predictor_NN.py: TrainInputsSchedulePredictorNN.get_trained_model
  • Large Method error_prediction_NN.py: ErrorPredictionNN.init
  • Complex Method accel_brake_map_calibrator.py: CalibratorByNeuralNetwork.train_calibrator_NN
  • Complex Method train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.train_model
  • Large Method vehicle_adaptor_compensator.cpp: AdaptorILQR::set_params
  • Complex Method train_error_prediction_NN.py: train_error_prediction_NN.train_model
  • Deep, Nested Complexity python_simulator.py: PythonSimulator.F_true_prediction
  • Complex Method train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.freeze_shallow_layers
  • Lines of Code in a Single File accel_brake_map_calibrator.py
  • Overall Code Complexity accel_brake_map_calibrator.py
  • Deep, Nested Complexity collected_data_counter.py: CollectedDataCounter.outlier_exclusion_by_linear_regression
  • Deep, Nested Complexity nominal_ilqr.cpp: calc_forward_trajectory_with_cost
  • Bumpy Road Ahead NN_model_evaluator.py: NNModelEvaluator.evaluate
  • Overall Code Complexity driving_log_plotter.py
  • Code Duplication rosbag_to_csv.py
  • Lines of Code in a Single File python_simulator.py
  • Complex Method python_simulator.py: PythonSimulator.save_mpc_drive_record
  • Overall Code Complexity python_simulator.py
  • Deep, Nested Complexity run_auto_parameter_change_sim.py: run_parameter_change_sim
  • Deep, Nested Complexity run_auto_parameter_change_sim_with_single_model.py: run_parameter_change_sim
  • Lines of Code in a Single File density_estimation.py
  • Deep, Nested Complexity actuation_map_2d.cpp: ActuationMap2D
  • Code Duplication nominal_dynamics.cpp
  • Lines of Code in a Single File vehicle_adaptor_compensator.cpp
  • Deep, Nested Complexity vehicle_adaptor_compensator.cpp: VehicleAdaptor::get_adjusted_inputs
  • Lines of Code in a Single File inputs_schedule_predictor_NN.py
  • Code Duplication inputs_schedule_predictor_NN.py
  • Overall Code Complexity inputs_schedule_predictor_NN.py
  • Deep, Nested Complexity inputs_schedule_predictor_NN.py: TrainInputsSchedulePredictorNN.train_model
  • Lines of Code in a Single File train_error_prediction_NN.py
  • Code Duplication train_error_prediction_NN.py
  • Overall Code Complexity train_error_prediction_NN.py
  • Lines of Code in a Single File train_error_prediction_NN_with_offline_data.py
  • Code Duplication train_error_prediction_NN_with_offline_data.py
  • Overall Code Complexity train_error_prediction_NN_with_offline_data.py
  • Lines of Code in a Single File training_utils.py
  • Complex Method driving_log_plotter.py: DrivingLogPlotter.load_csv
  • Complex Method run_auto_parameter_change_sim.py: run_parameter_change_sim
  • Complex Method python_simulator.py: PythonSimulator.perturbed_sim
  • Large Method training_utils.py: TrainErrorPredictionNNFunctions.get_loss
  • Large Method inputs_schedule_predictor_NN.py: get_loss
  • Complex Method train_error_prediction_NN.py: train_error_prediction_NN.fix_lstm
  • Large Method inputs_schedule_predictor_NN.py: TrainInputsSchedulePredictorNN.relearn_model
  • Complex Method python_simulator.py: PythonSimulator.F_true_prediction
  • Complex Method python_simulator.py: PythonSimulator.F_sim
  • Complex Method accel_brake_map_calibrator.py: DummyDataGenerator.add_dummy_data
  • Large Method get_initial_hidden_NN_with_offline_data.py: GetInitialHiddenNN.init
  • Large Method python_simulator.py: PythonSimulator.init
  • Large Method nominal_ilqr.cpp: set_params_from_yaml
  • Complex Method run_auto_parameter_change_sim_with_single_model.py: run_parameter_change_sim
  • Complex Method train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.update_adaptive_weight
  • Large Method training_utils.py: TrainErrorPredictionNNWithOfflineData.get_each_component_loss
  • Complex Conditional accel_brake_map_calibrator.py: CalibratorByNeuralNetwork.train_calibrator_NN
  • Bumpy Road Ahead accel_brake_map_calibrator.py: AddDataFromCSV.add_data_from_csv
  • Complex Conditional actuation_map_2d.cpp: get_actuation_cmd
  • Large Method python_simulator.py: PythonSimulator.save_pp_eight_record
  • Large Method training_utils.py: TrainErrorPredictionNNWithOfflineData.get_acc_steer_models_prediction
  • Complex Method inputs_schedule_predictor_NN.py: TrainInputsSchedulePredictorNN.train_model
  • Complex Method wrapper_train_error_prediction_NN_with_offline_data.py: get_relearned_model_wrapper
  • Large Method training_utils.py: TrainErrorPredictionNNFunctions.get_each_component_loss
  • Large Method vehicle_adaptor_compensator.cpp: AdaptorILQR::compute_optimal_control
  • Complex Method accel_brake_map_calibrator.py: CalibratorByEnsembleNN.save_accel_brake_map_ensemble_NN
  • Large Method train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.get_relearned_model
  • Large Method vehicle_adaptor_compensator.cpp: VehicleAdaptor::set_NN_params_from_csv
  • Large Method python_simulator.py: PythonSimulator.set_NN_params_from_model
  • Large Method training_utils.py: TrainErrorPredictionNNWithOfflineData.get_acc_steer_model_prediction
  • Deep, Nested Complexity accel_brake_map_calibrator.py: CalibratorByNeuralNetwork.train_calibrator_NN
  • Deep, Nested Complexity accel_brake_map_calibrator.py: CalibratorByEnsembleNN.calc_accel_brake_map_ensemble_NN
  • Deep, Nested Complexity accel_brake_map_calibrator.py: DummyDataGenerator.add_dummy_data
  • Complex Method collected_data_counter.py: CollectedDataCounter.outlier_exclusion_by_linear_regression
  • Primitive Obsession nominal_ilqr.cpp
  • Excess Number of Function Arguments pure_pursuit_controller.py: PurePursuitController.pure_pursuit_control
  • Complex Method pure_pursuit_gain_updater.py: pure_pursuit_gain_updater.get_acc_gain_scaling
  • Excess Number of Function Arguments python_simulator.py: PythonSimulator.drive_sim
  • Excess Number of Function Arguments run_auto_parameter_change_sim.py: run_parameter_change_sim
  • Excess Number of Function Arguments run_auto_parameter_change_sim_with_single_model.py: run_parameter_change_sim
  • Excess Number of Function Arguments mpc_straight_line_course.py: create_straight_line_course
  • Deep, Nested Complexity data_collection_utils.py: compute_curvature_radius
  • Deep, Nested Complexity data_collection_utils.py: FigureEight.get_trajectory_points
  • Excess Number of Function Arguments delay_compensator.py: PolynomialExtrapolator.init
  • Missing Arguments Abstractions density_estimation.py
  • Missing Arguments Abstractions inputs_prediction.cpp
  • Excess Number of Function Arguments inputs_ref_smoother.cpp: InputsRefSmoother::set_params
  • Missing Arguments Abstractions transform_vehicle_adaptor_model.cpp
  • Complex Conditional vehicle_adaptor_compensator.cpp: VehicleAdaptor::get_adjusted_inputs
  • Missing Arguments Abstractions vehicle_adaptor_compensator.cpp
  • Primitive Obsession vehicle_adaptor_utils.cpp
  • Excess Number of Function Arguments add_data_from_csv.py: add_data_from_csv.add_data_from_csv
  • Excess Number of Function Arguments error_prediction_NN.py: ErrorPredictionNN.init
  • Excess Number of Function Arguments get_initial_hidden_NN_with_offline_data.py: GetInitialHiddenNN.init
  • Missing Arguments Abstractions inputs_schedule_predictor_NN.py
  • Missing Arguments Abstractions train_error_prediction_NN.py
  • Missing Arguments Abstractions train_error_prediction_NN_with_offline_data.py
  • Missing Arguments Abstractions training_utils.py
  • Complex Method wrapper_train_error_prediction_NN_with_offline_data.py: get_trained_model_wrapper
  • Complex Method actuation_map_2d.cpp: get_actuation_cmd
  • Bumpy Road Ahead python_simulator.py: PythonSimulator.perturbed_sim
  • Bumpy Road Ahead vehicle_adaptor_compensator.cpp: TrainedDynamics::F_with_model_diff
  • Bumpy Road Ahead inputs_schedule_predictor_NN.py: AddDataFromCsv.add_data_from_csv
  • Bumpy Road Ahead accel_brake_map_calibrator.py: CalibratorByEnsembleNN.calibrate_by_ensemble_NN
  • Bumpy Road Ahead accel_brake_map_calibrator.py: DummyDataGenerator.add_dummy_data
  • Bumpy Road Ahead vehicle_adaptor_compensator.cpp: AdaptorILQR::calc_forward_trajectory_with_cost
  • Bumpy Road Ahead vehicle_adaptor_compensator.cpp: AdaptorILQR::compute_ilqr_coefficients
  • Bumpy Road Ahead actuation_map_2d.cpp: ActuationMap2D
  • Bumpy Road Ahead nominal_ilqr.cpp: sg_filter_impl
  • Bumpy Road Ahead nominal_ilqr.cpp: calc_forward_trajectory_with_cost
  • Excess Number of Function Arguments vehicle_adaptor_utils.cpp: FilterDiffNN::set_sg_filter_params
  • Complex Conditional pure_pursuit_gain_updater.py: pure_pursuit_gain_updater.get_steer_gain_scaling
  • Bumpy Road Ahead train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.train_model
  • Excess Number of Function Arguments inputs_prediction.cpp: InputsSchedulePrediction::set_NN_params
  • Complex Method actuation_map_2d.cpp: get_sim_actuation
  • Complex Method actuation_map_2d.cpp: ActuationMap2D
  • Excess Number of Function Arguments parameter_change_utils.py: test_dir_name
  • Bumpy Road Ahead accel_brake_map_calibrator.py: AddDataFromCSV.map_validation
  • Bumpy Road Ahead accel_brake_map_calibrator.py: CalibratorByNeuralNetwork.train_calibrator_NN
  • Bumpy Road Ahead accel_brake_map_calibrator.py: CalibratorByNeuralNetwork.calc_accel_brake_map_NN
  • Bumpy Road Ahead accel_brake_map_calibrator.py: CalibratorByEnsembleNN.calc_accel_brake_map_ensemble_NN
  • Bumpy Road Ahead accel_brake_map_calibrator.py: CalibratorByEnsembleNN.save_accel_brake_map_ensemble_NN
  • Bumpy Road Ahead rosbag_to_csv.py: isTopic
  • Bumpy Road Ahead rosbag_to_csv.py: read_msg_recursive
  • Bumpy Road Ahead vehicle_adaptor_utils.h: sg_filter_impl
  • Bumpy Road Ahead run_auto_parameter_change_sim.py: run_parameter_change_sim
  • Bumpy Road Ahead run_auto_parameter_change_sim_with_single_model.py: run_parameter_change_sim
  • Bumpy Road Ahead mpc_straight_line_course.py: create_straight_line_course
  • Bumpy Road Ahead data_collection_utils.py: GetInputNoise.get_additional_sine
  • Bumpy Road Ahead data_collection_utils.py: FigureEight.get_trajectory_points
  • Bumpy Road Ahead density_estimation.py: calc_scalar_indexes
  • Bumpy Road Ahead density_estimation.py: kde_score_func
  • Bumpy Road Ahead density_estimation.py: list_of_scalar_index_and_error
  • Bumpy Road Ahead inputs_prediction.cpp: InputsSchedulePrediction::get_inputs_schedule_predicted
  • Bumpy Road Ahead vehicle_adaptor_utils.cpp: read_csv
  • Bumpy Road Ahead vehicle_adaptor_utils.cpp: interpolate_eigen
  • Bumpy Road Ahead vehicle_adaptor_utils.cpp: interpolate_vector
  • Bumpy Road Ahead vehicle_adaptor_utils.cpp: PolynomialRegressionPredictor::calc_coef_matrix
  • Bumpy Road Ahead vehicle_adaptor_utils.cpp: PolynomialRegressionPredictor::calc_prediction_matrix
  • Bumpy Road Ahead train_error_prediction_NN.py: train_error_prediction_NN.train_model
  • Bumpy Road Ahead train_error_prediction_NN.py: train_error_prediction_NN.relearn_model
  • Bumpy Road Ahead train_error_prediction_NN.py: train_error_prediction_NN.update_adaptive_weight
  • Bumpy Road Ahead training_utils.py: TrainErrorPredictionNNFunctions.get_loss
  • Bumpy Road Ahead training_utils.py: TrainErrorPredictionNNFunctions.get_acc_steer_model_prediction
  • Bumpy Road Ahead training_utils.py: TrainErrorPredictionNNFunctions.get_acc_steer_models_prediction
  • Bumpy Road Ahead training_utils.py: TrainErrorPredictionNNWithOfflineData.get_loss
  • Bumpy Road Ahead training_utils.py: TrainErrorPredictionNNWithOfflineData.get_acc_steer_model_prediction
  • Bumpy Road Ahead training_utils.py: TrainErrorPredictionNNWithOfflineData.get_acc_steer_models_prediction
  • Bumpy Road Ahead training_utils.py: plot_relearned_vs_original_prediction_error
  • Bumpy Road Ahead vehicle_adaptor.cpp: VehicleAdaptor::compensate
  • Excess Number of Function Arguments parameter_change_utils.py: DirGenerator.test_dir_name
  • Bumpy Road Ahead python_simulator.py: PythonSimulator.F_true_prediction
  • Bumpy Road Ahead vehicle_adaptor_compensator.cpp: TrainedDynamics::F_with_model_for_candidates
  • Excess Number of Function Arguments transform_vehicle_adaptor_model.cpp: TransformModelToEigen::set_params
  • Bumpy Road Ahead actuation_map_2d.cpp: get_sim_actuation
  • Bumpy Road Ahead actuation_map_2d.cpp: get_actuation_cmd
  • Bumpy Road Ahead nominal_ilqr.cpp: interpolate_eigen
  • Bumpy Road Ahead nominal_ilqr.cpp: interpolate_vector
  • Bumpy Road Ahead nominal_ilqr.cpp: compute_optimal_control
  • Bumpy Road Ahead inputs_schedule_predictor_NN.py: get_loss
  • Bumpy Road Ahead inputs_schedule_predictor_NN.py: TrainInputsSchedulePredictorNN.train_model
  • Bumpy Road Ahead inputs_schedule_predictor_NN.py: TrainInputsSchedulePredictorNN.save_model
  • Bumpy Road Ahead train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.update_adaptive_weight
  • Excess Number of Function Arguments data_collection_utils.py: FigureEight.init
  • Excess Number of Function Arguments vehicle_adaptor_utils.cpp: FilterDiffNN::fit_transform_for_NN_diff
  • Excess Number of Function Arguments data_collection_utils.py: driving_log_updater.update
  • Excess Number of Function Arguments train_error_prediction_NN.py: train_error_prediction_NN.relearn_model
  • Excess Number of Function Arguments train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.relearn_model
  • Excess Number of Function Arguments wrapper_train_error_prediction_NN_with_offline_data.py: get_relearned_model_wrapper
  • Excess Number of Function Arguments wrapper_train_error_prediction_NN_with_offline_data.py: get_relearned_model
  • Excess Number of Function Arguments data_collection_utils.py: GetInputNoise.create_additional_sine_data
  • Excess Number of Function Arguments transform_vehicle_adaptor_model.cpp: TransformModelToEigen::error_prediction
  • Excess Number of Function Arguments nominal_dynamics.cpp: NominalDynamics::set_params
  • Excess Number of Function Arguments train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.train_model
  • Excess Number of Function Arguments nominal_dynamics.cpp: NominalDynamics::F_with_input_history_and_diff
  • Excess Number of Function Arguments accel_brake_map_calibrator.py: CalibratorByNeuralNetwork.train_calibrator_NN
  • Excess Number of Function Arguments train_error_prediction_NN.py: train_error_prediction_NN.train_model
  • Excess Number of Function Arguments wrapper_train_error_prediction_NN_with_offline_data.py: get_trained_model_wrapper
  • Excess Number of Function Arguments wrapper_train_error_prediction_NN_with_offline_data.py: get_trained_model
  • Excess Number of Function Arguments accel_brake_map_calibrator.py: CalibratorByEnsembleNN.calibrate_by_ensemble_NN
  • Excess Number of Function Arguments nominal_dynamics.cpp: NominalDynamics::F_with_input_history
  • Excess Number of Function Arguments nominal_dynamics.cpp: NominalDynamics::F_with_input_history_and_diff
  • Excess Number of Function Arguments nominal_dynamics.cpp: NominalDynamics::F_with_input_history_for_candidates
  • Excess Number of Function Arguments train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.get_relearned_model
  • Excess Number of Function Arguments nominal_ilqr.cpp: compute_ilqr_coefficients
  • Excess Number of Function Arguments inputs_schedule_predictor_NN.py: get_loss
  • Excess Number of Function Arguments train_error_prediction_NN.py: train_error_prediction_NN.get_relearned_model
  • Excess Number of Function Arguments training_utils.py: plot_relearned_vs_original_prediction_error
  • Excess Number of Function Arguments transform_vehicle_adaptor_model.cpp: TransformModelToEigen::error_prediction_with_diff
  • Excess Number of Function Arguments inputs_schedule_predictor_NN.py: TrainInputsSchedulePredictorNN.relearn_model
  • Excess Number of Function Arguments train_error_prediction_NN.py: train_error_prediction_NN.relearn_temp_model
  • Excess Number of Function Arguments nominal_ilqr.cpp: set_params
  • Excess Number of Function Arguments nominal_ilqr.cpp: calc_forward_trajectory_with_diff
  • Excess Number of Function Arguments nominal_ilqr.cpp: calc_forward_trajectory_with_cost
  • Excess Number of Function Arguments nominal_ilqr.cpp: compute_optimal_control
  • Excess Number of Function Arguments nominal_ilqr.cpp: set_params
  • Excess Number of Function Arguments inputs_schedule_predictor_NN.py: TrainInputsSchedulePredictorNN.train_model
  • Excess Number of Function Arguments accel_brake_map_calibrator.py: DummyDataGenerator.add_dummy_data
  • Excess Number of Function Arguments nominal_ilqr.cpp: calc_limits
  • Excess Number of Function Arguments accel_brake_map_calibrator.py: CalibratorByNeuralNetwork.calibrate_by_NN
  • Excess Number of Function Arguments accel_brake_map_calibrator.py: CalibratorByEnsembleNN.save_accel_brake_map_ensemble_NN
  • Excess Number of Function Arguments density_estimation.py: calc_percentage_of_density_below_threshold
  • Excess Number of Function Arguments inputs_prediction.cpp: InputsSchedulePrediction::set_params
  • Excess Number of Function Arguments inputs_prediction.cpp: InputsSchedulePrediction::update_encoder_cells
  • Excess Number of Function Arguments inputs_prediction.cpp: InputsSchedulePrediction::get_encoder_cells
  • Excess Number of Function Arguments inputs_prediction.cpp: InputsSchedulePrediction::update_decoder_cells
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: TrainedDynamics::set_NN_params
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: AdaptorILQR::set_NN_params
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: VehicleAdaptor::set_NN_params
  • Excess Number of Function Arguments inputs_schedule_predictor_NN.py: validate_in_batches
  • Excess Number of Function Arguments inputs_schedule_predictor_NN.py: TrainInputsSchedulePredictorNN.get_trained_model
  • Excess Number of Function Arguments train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.init
  • Excess Number of Function Arguments density_estimation.py: calc_scalar_indexes
  • Excess Number of Function Arguments density_estimation.py: get_kde_scores
  • Excess Number of Function Arguments density_estimation.py: calc_minimum_density_point
  • Excess Number of Function Arguments density_estimation.py: correlation_between_scalar_indexes_and_lateral_errors
  • Excess Number of Function Arguments density_estimation.py: list_of_scalar_index_and_error
  • Excess Number of Function Arguments train_error_prediction_NN.py: train_error_prediction_NN.get_updated_temp_model
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNWithOfflineData.get_loss
  • Excess Number of Function Arguments nominal_ilqr.cpp: calc_line_search_candidates
  • Excess Number of Function Arguments density_estimation.py: plot_kernel_density
  • Excess Number of Function Arguments density_estimation.py: kde_data
  • Excess Number of Function Arguments transform_vehicle_adaptor_model.cpp: TransformModelToEigen::update_lstm
  • Excess Number of Function Arguments transform_vehicle_adaptor_model.cpp: TransformModelToEigen::error_prediction
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: AdaptorILQR::calc_inputs_ref_info
  • Excess Number of Function Arguments inputs_schedule_predictor_NN.py: InputsSchedulePredictorNN.init
  • Excess Number of Function Arguments inputs_schedule_predictor_NN.py: TrainInputsSchedulePredictorNN.init
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNWithOfflineData.validate_in_batches
  • Excess Number of Function Arguments accel_brake_map_calibrator.py: AddDataFromCSV.add_data_from_csv
  • Excess Number of Function Arguments accel_brake_map_calibrator.py: AddDataFromCSV.map_validation
  • Excess Number of Function Arguments accel_brake_map_calibrator.py: calc_monotone_constraint_cost
  • Excess Number of Function Arguments accel_brake_map_calibrator.py: validate_in_batches
  • Excess Number of Function Arguments train_error_prediction_NN.py: train_error_prediction_NN.init
  • Excess Number of Function Arguments train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.get_trained_model
  • Excess Number of Function Arguments train_error_prediction_NN_with_offline_data.py: train_error_prediction_NN_with_offline_data.update_adaptive_weight
  • Excess Number of Function Arguments density_estimation.py: load_kinematic_states
  • Excess Number of Function Arguments density_estimation.py: Shape.triangle
  • Excess Number of Function Arguments density_estimation.py: kde_score_func
  • Excess Number of Function Arguments density_estimation.py: plot_histogram_of_kde_scores
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: AdaptorILQR::calc_forward_trajectory_with_cost
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: AdaptorILQR::compute_ilqr_coefficients
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNFunctions.get_loss
  • Excess Number of Function Arguments inputs_schedule_predictor_NN.py: generate_random_vector
  • Excess Number of Function Arguments inputs_schedule_predictor_NN.py: TrainInputsSchedulePredictorNN.relearn_acc
  • Excess Number of Function Arguments inputs_schedule_predictor_NN.py: TrainInputsSchedulePredictorNN.relearn_steer
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNWithOfflineData.get_each_component_loss
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: AdaptorILQR::compute_optimal_control
  • Excess Number of Function Arguments inputs_schedule_predictor_NN.py: AddDataFromCsv.add_data_from_csv
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNFunctions.validate_in_batches
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNFunctions.get_each_component_loss
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNFunctions.get_sequence_data
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNWithOfflineData.get_signed_prediction_error
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNWithOfflineData.get_sequence_data
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: TrainedDynamics::F_with_model
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: TrainedDynamics::F_with_model_diff
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: TrainedDynamics::F_with_model_diff
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: TrainedDynamics::F_with_model_for_candidates
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: TrainedDynamics::calc_forward_trajectory_with_diff
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNWithOfflineData.get_Y_pred_np
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNWithOfflineData.get_losses
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNWithOfflineData.get_acc_steer_model_prediction
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNWithOfflineData.get_acc_steer_models_prediction
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNWithOfflineData.get_model_signed_prediction_error
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNWithOfflineData.get_models_signed_prediction_error
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: TrainedDynamics::set_vehicle_params
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: TrainedDynamics::F_with_model_for_calc_controller_prediction_error
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: TrainedDynamics::F_with_model
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: TrainedDynamics::F_with_model_for_candidates
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: AdaptorILQR::set_intermediate_cost
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: AdaptorILQR::set_vehicle_params
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNFunctions.get_losses
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNFunctions.get_acc_steer_model_prediction
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNFunctions.get_acc_steer_models_prediction
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNFunctions.get_model_signed_prediction_error
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNFunctions.get_models_signed_prediction_error
  • Excess Number of Function Arguments training_utils.py: TrainErrorPredictionNNFunctions.get_signed_prediction_error
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: TrainedDynamics::update_lstm_states
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: AdaptorILQR::set_states_cost
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: AdaptorILQR::set_terminal_cost
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: AdaptorILQR::update_lstm_states
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: AdaptorILQR::calc_line_search_candidates
  • Excess Number of Function Arguments vehicle_adaptor_compensator.cpp: VehicleAdaptor::set_controller_prediction

Annotations

Check warning on line 1 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Lines of Code in a Single File

This module has 1162 lines of code, improve code health by reducing it to 600. The number of Lines of Code in a single file. More Lines of Code lowers the code health.

Check warning on line 721 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Brain Method

CalibratorByNeuralNetwork.train_calibrator_NN is a brain method. A Brain Method -- aka a God Function -- is a large and complex function that centralizes the behavior of a module. Brain Methods are detected using a combination of the following code smells: Deeply Nested Logic + High Cyclomatic Complexity + Many Lines of Code + Many Function Arguments.

Check warning on line 1252 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Brain Method

DummyDataGenerator.add_dummy_data is a brain method. A Brain Method -- aka a God Function -- is a large and complex function that centralizes the behavior of a module. Brain Methods are detected using a combination of the following code smells: Deeply Nested Logic + High Cyclomatic Complexity + Many Lines of Code + Many Function Arguments.

Check warning on line 283 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Complex Method

AddDataFromCSV.add_data_from_csv has a cyclomatic complexity of 37, threshold = 9. This function has many conditional statements (e.g. if, for, while), leading to lower code health. Avoid adding more conditionals and code to it without refactoring.

Check warning on line 927 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Complex Method

CalibratorByEnsembleNN.calibrate_by_ensemble_NN has a cyclomatic complexity of 21, threshold = 9. This function has many conditional statements (e.g. if, for, while), leading to lower code health. Avoid adding more conditionals and code to it without refactoring.

Check warning on line 721 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Complex Method

CalibratorByNeuralNetwork.train_calibrator_NN has a cyclomatic complexity of 18, threshold = 9. This function has many conditional statements (e.g. if, for, while), leading to lower code health. Avoid adding more conditionals and code to it without refactoring.

Check warning on line 1252 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Complex Method

DummyDataGenerator.add_dummy_data has a cyclomatic complexity of 13, threshold = 9. This function has many conditional statements (e.g. if, for, while), leading to lower code health. Avoid adding more conditionals and code to it without refactoring.

Check warning on line 1093 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Complex Method

CalibratorByEnsembleNN.save_accel_brake_map_ensemble_NN has a cyclomatic complexity of 11, threshold = 9. This function has many conditional statements (e.g. if, for, while), leading to lower code health. Avoid adding more conditionals and code to it without refactoring.

Check warning on line 676 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Complex Conditional

CalibratorByNeuralNetwork.train_calibrator_NN has 1 complex conditionals with 3 branches, threshold = 2. A complex conditional is an expression inside a branch (e.g. if, for, while) which consists of multiple, logical operators such as AND/OR. The more logical operators in an expression, the more severe the code smell.

Check warning on line 283 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Bumpy Road Ahead

AddDataFromCSV.add_data_from_csv has 6 blocks with nested conditional logic. Any nesting of 2 or deeper is considered. Threshold is one single, nested block per function. The Bumpy Road code smell is a function that contains multiple chunks of nested conditional logic. The deeper the nesting and the more bumps, the lower the code health.

Check warning on line 927 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Bumpy Road Ahead

CalibratorByEnsembleNN.calibrate_by_ensemble_NN has 3 blocks with nested conditional logic. Any nesting of 2 or deeper is considered. Threshold is one single, nested block per function. The Bumpy Road code smell is a function that contains multiple chunks of nested conditional logic. The deeper the nesting and the more bumps, the lower the code health.

Check warning on line 1252 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Bumpy Road Ahead

DummyDataGenerator.add_dummy_data has 3 blocks with nested conditional logic. Any nesting of 2 or deeper is considered. Threshold is one single, nested block per function. The Bumpy Road code smell is a function that contains multiple chunks of nested conditional logic. The deeper the nesting and the more bumps, the lower the code health.

Check warning on line 480 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Bumpy Road Ahead

AddDataFromCSV.map_validation has 2 blocks with nested conditional logic. Any nesting of 2 or deeper is considered. Threshold is one single, nested block per function. The Bumpy Road code smell is a function that contains multiple chunks of nested conditional logic. The deeper the nesting and the more bumps, the lower the code health.

Check warning on line 721 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Bumpy Road Ahead

CalibratorByNeuralNetwork.train_calibrator_NN has 2 blocks with nested conditional logic. Any nesting of 2 or deeper is considered. Threshold is one single, nested block per function. The Bumpy Road code smell is a function that contains multiple chunks of nested conditional logic. The deeper the nesting and the more bumps, the lower the code health.

Check warning on line 800 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Bumpy Road Ahead

CalibratorByNeuralNetwork.calc_accel_brake_map_NN has 2 blocks with nested conditional logic. Any nesting of 2 or deeper is considered. Threshold is one single, nested block per function. The Bumpy Road code smell is a function that contains multiple chunks of nested conditional logic. The deeper the nesting and the more bumps, the lower the code health.

Check warning on line 973 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Bumpy Road Ahead

CalibratorByEnsembleNN.calc_accel_brake_map_ensemble_NN has 2 blocks with nested conditional logic. Any nesting of 2 or deeper is considered. Threshold is one single, nested block per function. The Bumpy Road code smell is a function that contains multiple chunks of nested conditional logic. The deeper the nesting and the more bumps, the lower the code health.

Check warning on line 1093 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Bumpy Road Ahead

CalibratorByEnsembleNN.save_accel_brake_map_ensemble_NN has 2 blocks with nested conditional logic. Any nesting of 2 or deeper is considered. Threshold is one single, nested block per function. The Bumpy Road code smell is a function that contains multiple chunks of nested conditional logic. The deeper the nesting and the more bumps, the lower the code health.

Check warning on line 1 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Overall Code Complexity

This module has a mean cyclomatic complexity of 6.00 across 31 functions. The mean complexity threshold is 4. This file has many conditional statements (e.g. if, for, while) across its implementation, leading to lower code health. Avoid adding more conditionals.

Check warning on line 721 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Deep, Nested Complexity

CalibratorByNeuralNetwork.train_calibrator_NN has a nested complexity depth of 4, threshold = 4. This function contains deeply nested logic such as if statements and/or loops. The deeper the nesting, the lower the code health.

Check warning on line 973 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Deep, Nested Complexity

CalibratorByEnsembleNN.calc_accel_brake_map_ensemble_NN has a nested complexity depth of 4, threshold = 4. This function contains deeply nested logic such as if statements and/or loops. The deeper the nesting, the lower the code health.

Check warning on line 1252 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Deep, Nested Complexity

DummyDataGenerator.add_dummy_data has a nested complexity depth of 4, threshold = 4. This function contains deeply nested logic such as if statements and/or loops. The deeper the nesting, the lower the code health.

Check warning on line 283 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Excess Number of Function Arguments

AddDataFromCSV.add_data_from_csv has 5 arguments, threshold = 4. This function has too many arguments, indicating a lack of encapsulation. Avoid adding more arguments.

Check warning on line 480 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Excess Number of Function Arguments

AddDataFromCSV.map_validation has 5 arguments, threshold = 4. This function has too many arguments, indicating a lack of encapsulation. Avoid adding more arguments.

Check warning on line 500 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Excess Number of Function Arguments

calc_monotone_constraint_cost has 5 arguments, threshold = 4. This function has too many arguments, indicating a lack of encapsulation. Avoid adding more arguments.

Check warning on line 543 in vehicle/autoware_raw_vehicle_cmd_converter/src/vehicle_adaptor/autoware_vehicle_adaptor/autoware_vehicle_adaptor/calibrator/accel_brake_map_calibrator.py

See this annotation in the file changed.

@codescene-delta-analysis codescene-delta-analysis / CodeScene Cloud Delta Analysis (main)

❌ New issue: Excess Number of Function Arguments

validate_in_batches has 5 arguments, threshold = 4. This function has too many arguments, indicating a lack of encapsulation. Avoid adding more arguments.