Skip to content

enavu/ASN1SparkDatasource

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

85 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ASN.1 Data Source for Apache Spark 2.x

A library for parsing and querying ASN.1 encoded data (Ber/Der) with Apache Spark, for Spark SQL and DataFrames.

Requirements

This library requires Spark 2.0+

Features

This package allows reading ASN.1 encoded files in local or distributed filesystem as Spark DataFrames. When reading files the API accepts several options:

  • path: location of files. Similar to Spark can accept standard Hadoop globbing expressions.
  • schemaFileType: the type of the file that contain the schema (currently supports asn and json files).
  • schemaFilePath: the path of the file that contain the schema definition (currently supports scala and java).
  • customDecoderLanguage: the language in which the custom decoder is written.
  • customDecoder: the fully qualified name of the user custom decoder.
  • precisionFactor: the number of next records to check the start position for splitting, by default equal to 5 .
  • mainTag: the name of main structure of the asn file, by default equal to 'sequence' .

Scala API

schema inference is not yet supported, the path of the schema definition file and its type or explicit schema definition are necessary :

  • asn schema definition:
import org.apache.spark.sql.SparkSession
import org.apache.spark.SparkConf

val conf = new SparkConf().setAppName("spark-asn1-datasource")
val spark = SparkSession.builder().config(conf).master("local[*]").getOrCreate()
val asn1DataFrame = spark.read.format("asn1V1")
      .option("schemaFileType","asn")
      .option("schemaFilePath", "src/test/resources/simpleTypes.asn")
      .load("src/test/resources/simpleTypes.ber")
  • json schema definition:
import org.apache.spark.sql.SparkSession
import org.apache.spark.SparkConf

val conf = new SparkConf().setAppName("spark-asn1-datasource")
val spark = SparkSession.builder().config(conf).master("local[*]").getOrCreate()
val asn1DataFrame = spark.read.format("asn1V1")
      .option("schemaFileType","json")
      .option("schemaFilePath", "src/test/resources/simpleTypes.json")
      .load("src/test/resources/simpleTypes.ber")
  • explicit schema definition: You can manually specify the schema when reading data:
import org.apache.spark.sql.SparkSession
import org.apache.spark.SparkConf
import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType}

val conf = new SparkConf().setAppName("spark-asn1-datasource")
val spark = SparkSession.builder().config(conf).master("local[*]").getOrCreate()
val schema = StructType(
      StructField("recordNumber", IntegerType, false) ::
        StructField("callingNumber", StringType, true) ::
        StructField("calledNumber", StringType, true) ::
        StructField("startDate", StringType, true) ::
        StructField("startTime", StringType, true) ::
        StructField("duration", IntegerType, true) :: Nil
    )

val asn1DataFrame = spark.read.format("asn1V1")
      .schema(schema)
      .load("src/test/resources/simpleTypes.ber")

You can use your own decoding logic: you need to extend the ScalaDecoder Trait and put the decoding logic that takes an encoded record and a schema,decode it and return it as a sequence

package customDecoding

import customDecoding.ScalaDecoder
import org.apache.hadoop.io.Text
import org.apache.spark.sql.types.StructType


object CustomScalaDecoder extends ScalaDecoder {
override def decode(record: Text, schema: StructType): Seq[Any] = {
//your own decoding logic
return null
}
}

After creating your Custom Decoder use the customDecoder feature to integrate it:

import org.apache.spark.sql.SparkSession
import org.apache.spark.SparkConf

val conf = new SparkConf().setAppName("spark-asn1-datasource")
val spark = SparkSession.builder().config(conf).master("local[*]").getOrCreate()
val asn1DataFrame = spark.read.format("asn1V1")
      .option("schemaFileType","asn")
      .option("schemaFilePath", "src/test/resources/simpleTypes.asn")
      .option("customDecoder","customDecoding.CustomScalaDecoder")
      .option("customDecoderLanguage","scala")
      .load("src/test/resources/simpleTypes.ber")

Hadoop InputFormat

The library contains a Hadoop input format for asn.1 encoded files, which you may make direct use of as follows:

import org.apache.spark.sql.SparkSession
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.io.{LongWritable, Text}
import hadoopIO.AsnInputFormat

val spark = SparkSession.builder().master("local[*]").getOrCreate()
val conf: Configuration = new Configuration(spark.sparkContext.hadoopConfiguration)
conf.set("precisionFactor","5")
val records = spark.sparkContext
                       .newAPIHadoopFile(
                       "src/test/resources/simpleTypes.ber", 
                       classOf[AsnInputFormat], 
                       classOf[LongWritable], 
                       classOf[Text], 
                       conf)

About

ASN.1 Data Source for Apache Spark 2.x

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Java 69.9%
  • Scala 30.1%