AWS COMMUNITY Welcome to step-by-step guide on building an advanced AI chatbot using AWS Bedrock. In this post, you'll learn how to create a powerful chatbot that can answer queries anytime, anywhere. Let's dive into the world of AI and explore the limitless possibilities! And what excites most is you can modify it as per your choice!
Author : Gagan
Linkedin : Connect 😺
Project-Link : Github 🫧
Live Demo here 🫧 : https://awschat.streamlit.app/
🫧 Setting Up Your Environment 🫧 Prerequisites Before we start, ensure you have the following: An AWS account AWS CLI configured AWS Bedrock enabled for your account Python 3.6 or later installed Streamlit installed (pip install streamlit) Boto3 installed (pip install boto3) Load environment variables using python-dotenv (pip install python-dotenv)
🫧AWS Credentials To interact with AWS services, you'll need to set up your AWS credentials. Here's how to configure them:
aws configure Note : Make sure aws cli is installed by
pip install awscli
aws --version
You'll be prompted to enter your AWS Access Key ID, Secret Access Key, region, and output format. In that paste your keys
AWS_ACCESS_KEY_ID=AKX........TQGLNYN
AWS_SECRET_ACCESS_KEY=U...........xKXTVTYr2EG/iyhh&hj
type 👉 us-east-1 in region and JSON in output when asked ( and done )
🫧 Installing Required Python Packages Create a requirements.txt file with the following content and install the dependencies:
boto3
requests
streamlit
langchain
langchain-community
python-dotenv
Flask
then run 👇
pip install -r requirements.txt
You will also need Telegram bot TOKEN and Chat ID for sending logs in TELEGRAM ✨ here is how your .env will look like 👇
AWS_ACCESS_KEY_ID=EXAMPKLDLLMLLJL
AWS_SECRET_ACCESS_KEY=n/EXAMPKLENKND/TuyiKNLDll
TELEGRAM_TOKEN=248998399:ExamPlerOIJOlkjKJHljhl
Now here is the code for gagan.py ( main script ) 👇
import base64
import boto3
import json
import os
import requests
import streamlit as st
from langchain.chains import LLMChain
from langchain.llms.bedrock import Bedrock
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
import time
import logging
import streamlit.components.v1 as components
# Configure logging
logging.basicConfig(level=logging.DEBUG, filename='app.log', filemode='a',
format='%(asctime)s - %(levelname)s - %(message)s')
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
logging.getLogger('').addHandler(console)
# Load environment variables from .env file
load_dotenv()
# Set up Telegram bot
TELEGRAM_TOKEN = os.getenv("TELEGRAM_TOKEN")
TELEGRAM_CHAT_ID = "6581618525" # Directly using the chat ID provided
TELEGRAM_URL = f"https://api.telegram.org/bot{TELEGRAM_TOKEN}/sendMessage"
# Bedrock client
bedrock_client = boto3.client(
service_name="bedrock-runtime",
region_name="us-east-1"
)
# Model IDs for text and image generation
text_model_id = "amazon.titan-text-premier-v1:0"
image_model_id = "amazon.titan-image-generator-v2:0"
# LLM for text generation
llm_text = Bedrock(
model_id=text_model_id,
client=bedrock_client,
model_kwargs={"maxTokenCount": 1000, "temperature": 0.5}
)
# Function for generating chat responses
def my_chatbot(language, freeform_text, template):
prompt = PromptTemplate(
input_variables=["language", "freeform_text"],
template=template
)
bedrock_chain = LLMChain(llm=llm_text, prompt=prompt)
response = bedrock_chain({'language': language, 'freeform_text': freeform_text})
return response['text']
# Function for generating images with backoff logic
def create_image(input_text):
image_config = {
"textToImageParams": {"text": input_text},
"taskType": "TEXT_IMAGE",
"imageGenerationConfig": {
"cfgScale": 8.0,
"seed": 0,
"quality": "standard",
"width": 512,
"height": 512,
"numberOfImages": 1
}
}
max_retries = 5
retry_delay = 60 # 1 minute
for attempt in range(max_retries):
try:
logging.debug("Invoking model for image generation, attempt %d", attempt + 1)
response = bedrock_client.invoke_model(
modelId=image_model_id,
contentType="application/json",
accept="application/json",
body=json.dumps(image_config)
)
response_body = json.loads(response['body'].read())
logging.debug(f"Response body: {response_body}")
if 'images' in response_body:
image_data_base64 = response_body['images'][0]
image_data = base64.b64decode(image_data_base64)
return image_data
else:
logging.error("No images found in response")
return None
except Exception as e:
logging.error(f"Error generating image: {e}")
if "ThrottlingException" in str(e):
logging.debug(f"ThrottlingException encountered, retrying after {retry_delay} seconds")
time.sleep(retry_delay)
else:
return None
logging.error("Max retries reached, failed to generate image")
return None
# Function to send logs to Telegram
def send_log_to_telegram(message):
payload = {"chat_id": TELEGRAM_CHAT_ID, "text": message}
try:
response = requests.post(TELEGRAM_URL, json=payload)
logging.debug(f"Telegram response: {response.json()}")
except Exception as e:
logging.error(f"Error sending message to Telegram: {e}")
# Custom JavaScript for typewriter effect
typewriter_js = """
<script>
var index = 0;
function typeWriter() {
if (index < fullText.length) {
document.getElementById("output").innerHTML += fullText.charAt(index);
index++;
}
}
</script>
"""
# Streamlit UI enhancements
st.set_page_config(page_title="Bedrock FM ", page_icon=":robot_face:", layout="centered")
st.image("logo.png", width=100)
st.title("Bedrock Chat 💬")
# CSS for styling and animations
st.markdown("""
<style>
.stButton button {
color: white;
background: linear-gradient(90deg, #476072, #2B2B2B);
border: 2px solid white;
padding: 12px 24px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
margin: 4px 2px;
transition-duration: 0.4s;
cursor: pointer;
border-radius: 12px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.stButton button:hover {
background-color: white;
color: yellow;
border: 3px solid white;
box-shadow: 0 5px 9px rgba(0, 0, 0, 0.1);
}
.message-card {
padding: 16px;
margin: 16px 0;
border-radius: 8px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.message-card h4 {
color: #4CAF50;
font-family: 'Courier New', Courier, monospace;
}
.typing {
display: inline-block;
font-size: 16px;
font-family: 'Courier New', Courier, monospace;
margin: 0;
white-space: nowrap;
overflow: hidden;
animation: typing 3s steps(40, end), blink-caret 0.75s step-end infinite;
border-right: 2px solid;
}
@keyframes typing {
from { width: 0 }
to { width: 100% }
}
@keyframes blink-caret {
from, to { border-color: transparent }
50% { border-color: black }
}
</style>
""", unsafe_allow_html=True)
# Sidebar elements
language = st.sidebar.selectbox("Language 📜", ["english", "hindi"])
template = st.sidebar.text_area("Customize Chat🧬", "You are a chatbot. You are in {language}.\n\n{freeform_text}")
if st.sidebar.button("Set Mode"):
st.session_state.template = template # Save the custom template to the session state
st.success("✨Template mode set successfully!")
max_token_count = st.sidebar.slider("Max Token Count", 50, 2000, 1000)
temperature = st.sidebar.slider("Temperature", 0.5, 0.9, 0.5)
# Move this part below the sliders
llm_text = Bedrock(
model_id=text_model_id,
client=bedrock_client,
model_kwargs={"maxTokenCount": max_token_count, "temperature": temperature}
)
suggested_questions = [
"What is the capital of France?",
"Who is Buddha?",
"Hello World in C++?",
"Top 10 Programming Languages?",
"How to get a job in Ai era?",
"Who is Ana de Armas?",
"What are Top 10 IMDB movies?"
]
# Update the following part to correctly display the response with the typing effect
if language:
st.sidebar.write("Suggested Questions:")
for question in suggested_questions:
if st.sidebar.button(question):
freeform_text = question
with st.spinner('Generating response...'):
response = my_chatbot(language, freeform_text, template)
st.markdown(f"<div class='message-card'><h4>🫧</h4><p>{response}</p></div>", unsafe_allow_html=True)
send_log_to_telegram(f"Asked: {question}\nAnswer: {response}")
freeform_text = st.text_area(label="", max_chars=500, placeholder="Chat with me...")
col1, col2 = st.columns(2)
with col1:
if st.button("Ask 💬"):
if freeform_text:
with st.spinner('Generating response...'):
response = my_chatbot(language, freeform_text, template)
st.markdown(f"<div class='message-card'><h4>🫧</h4><p>{response}</p></div>", unsafe_allow_html=True)
send_log_to_telegram(f"Asked: {freeform_text}\nAnswer: {response}")
with col2:
if st.button("Create Image"):
if freeform_text:
with st.spinner('Generating image...'):
image_data = create_image(freeform_text)
if image_data:
st.image(image_data, caption="Generated Image")
send_log_to_telegram(f"Generated Image for: {freeform_text}")
else:
st.error("Failed to generate image.")
send_log_to_telegram(f"Failed to generate image for: {freeform_text}")
if st.button("Clear"):
st.markdown("""
<script>
window.print(response);
</script>
""", unsafe_allow_html=True)
and you can run this script by running
python -m streamlit run gagan.py
And cool ! Your chat bot is running 🫧 Working Project Screenshots 🌌 Chatbot in Dark Theme
Bedrock Chatbot ( White Theme )
Bedrock Chatbot ( White Theme ) Mobile
Oh and you can set the temprature ( creativity of chatbot ) and token ( Output Length ) at run time from sidebar You can also use SET MODE for change behaviour of Chatbot
Thank You for reading my Post , Take care please fork 🍽️ and Star ⭐the repo it will be really Kind of you ( I have not a job yet haha ) ✨ Take care, Bye 🫧 See ya