-
Notifications
You must be signed in to change notification settings - Fork 250
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
fix: adding is_monotonic flag to sum #1793
base: main
Are you sure you want to change the base?
Conversation
0c47cd2
to
bfcdafb
Compare
bfcdafb
to
c5d670b
Compare
@@ -47,6 +48,8 @@ def update(increment, attributes, data_points) | |||
nil | |||
) | |||
|
|||
return if is_monotonic && increment < 0 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is this suppose to be instance variable @is_monotonic
?
monotonic also need to check with aggregation_temporality
For delta monotonic sums, this means the reader SHOULD expect non-negative values.
For cumulative monotonic sums, this means the reader SHOULD expect values that are not less than the previous value.
We also need to move this logic before ndp = data_points[attributes] || data_points[attributes] = NumberDataPoint.new
; because update doesn't return anything; it will update direct on data_points hash.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think checking if increment is negative fulfills the specs for cumulative sums. for delta sums it might be the case that we need to check if the sum (value + increment) is negative? only checking if increment is negative ensures the sum value is never negative but might reject some valid increments. is my logic correct?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think checking if increment is negative fulfills the specs for cumulative sums.
Yes, I think your logic is correct (also checked other implementation as your referenced).
The specification is somewhat confusing, but In this case of metrics, this means the sum is nominally increasing
should reduce confusion. (Now I think the specification is actually wrong regarding "for delta" and "for cum," and they should be swapped.)
for delta sums it might be the case that we need to check if the sum (value + increment) is negative?
For delta sum, it's kind tricky because the sum will be zeroed depends on when the instrument's value got exported. I see other implementations don't care about it. I would suggest follow their approach.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think my current implementation is very similar to the js one. Do you think there is something else that needs to be implemented?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM; may need other maintainers take a look too.
@@ -42,7 +42,7 @@ def add(increment, attributes: {}) | |||
private | |||
|
|||
def default_aggregation | |||
OpenTelemetry::SDK::Metrics::Aggregation::Sum.new | |||
OpenTelemetry::SDK::Metrics::Aggregation::Sum.new(is_monotonic: true) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I was going to ask that is there any spec to define the default for monotonic, but found the spec that explain it.
metrics_sdk/lib/opentelemetry/sdk/metrics/state/metric_stream.rb
Outdated
Show resolved
Hide resolved
ndps = sum_aggregation.collect(start_time, end_time, data_points) | ||
_(ndps[0].value).must_equal(-1) | ||
end | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We may want more test case once the logic for mixing up temporality and monotonic is there
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks, @garoazinha! This looks good to me. I appreciate your work on this!
@@ -11,11 +11,12 @@ module Aggregation | |||
# Contains the implementation of the Sum aggregation | |||
# https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#sum-aggregation | |||
class Sum | |||
attr_reader :aggregation_temporality | |||
attr_reader :aggregation_temporality, :is_monotonic |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@xuan-cao-swi typically I would think of these kinds of attributes hidden behind predicates.
Would it not make sense to make the public interface of this attribute monotonic?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The value in the protobuf is is_monotonic
, so I think the goal was to match. I also found it jarring* with Ruby's predicates.
opentelemetry-ruby/exporter/otlp/lib/opentelemetry/proto/metrics/v1/metrics_pb.rb
Line 11 in 289b4aa
descriptor_data = "\n,opentelemetry/proto/metrics/v1/metrics.proto\x12\x1eopentelemetry.proto.metrics.v1\x1a*opentelemetry/proto/common/v1/common.proto\x1a.opentelemetry/proto/resource/v1/resource.proto\"X\n\x0bMetricsData\x12I\n\x10resource_metrics\x18\x01 \x03(\x0b\x32/.opentelemetry.proto.metrics.v1.ResourceMetrics\"\xaf\x01\n\x0fResourceMetrics\x12;\n\x08resource\x18\x01 \x01(\x0b\x32).opentelemetry.proto.resource.v1.Resource\x12\x43\n\rscope_metrics\x18\x02 \x03(\x0b\x32,.opentelemetry.proto.metrics.v1.ScopeMetrics\x12\x12\n\nschema_url\x18\x03 \x01(\tJ\x06\x08\xe8\x07\x10\xe9\x07\"\x9f\x01\n\x0cScopeMetrics\x12\x42\n\x05scope\x18\x01 \x01(\x0b\x32\x33.opentelemetry.proto.common.v1.InstrumentationScope\x12\x37\n\x07metrics\x18\x02 \x03(\x0b\x32&.opentelemetry.proto.metrics.v1.Metric\x12\x12\n\nschema_url\x18\x03 \x01(\t\"\x92\x03\n\x06Metric\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x13\n\x0b\x64\x65scription\x18\x02 \x01(\t\x12\x0c\n\x04unit\x18\x03 \x01(\t\x12\x36\n\x05gauge\x18\x05 \x01(\x0b\x32%.opentelemetry.proto.metrics.v1.GaugeH\x00\x12\x32\n\x03sum\x18\x07 \x01(\x0b\x32#.opentelemetry.proto.metrics.v1.SumH\x00\x12>\n\thistogram\x18\t \x01(\x0b\x32).opentelemetry.proto.metrics.v1.HistogramH\x00\x12U\n\x15\x65xponential_histogram\x18\n \x01(\x0b\x32\x34.opentelemetry.proto.metrics.v1.ExponentialHistogramH\x00\x12:\n\x07summary\x18\x0b \x01(\x0b\x32\'.opentelemetry.proto.metrics.v1.SummaryH\x00\x42\x06\n\x04\x64\x61taJ\x04\x08\x04\x10\x05J\x04\x08\x06\x10\x07J\x04\x08\x08\x10\t\"M\n\x05Gauge\x12\x44\n\x0b\x64\x61ta_points\x18\x01 \x03(\x0b\x32/.opentelemetry.proto.metrics.v1.NumberDataPoint\"\xba\x01\n\x03Sum\x12\x44\n\x0b\x64\x61ta_points\x18\x01 \x03(\x0b\x32/.opentelemetry.proto.metrics.v1.NumberDataPoint\x12W\n\x17\x61ggregation_temporality\x18\x02 \x01(\x0e\x32\x36.opentelemetry.proto.metrics.v1.AggregationTemporality\x12\x14\n\x0cis_monotonic\x18\x03 \x01(\x08\"\xad\x01\n\tHistogram\x12G\n\x0b\x64\x61ta_points\x18\x01 \x03(\x0b\x32\x32.opentelemetry.proto.metrics.v1.HistogramDataPoint\x12W\n\x17\x61ggregation_temporality\x18\x02 \x01(\x0e\x32\x36.opentelemetry.proto.metrics.v1.AggregationTemporality\"\xc3\x01\n\x14\x45xponentialHistogram\x12R\n\x0b\x64\x61ta_points\x18\x01 \x03(\x0b\x32=.opentelemetry.proto.metrics.v1.ExponentialHistogramDataPoint\x12W\n\x17\x61ggregation_temporality\x18\x02 \x01(\x0e\x32\x36.opentelemetry.proto.metrics.v1.AggregationTemporality\"P\n\x07Summary\x12\x45\n\x0b\x64\x61ta_points\x18\x01 \x03(\x0b\x32\x30.opentelemetry.proto.metrics.v1.SummaryDataPoint\"\x86\x02\n\x0fNumberDataPoint\x12;\n\nattributes\x18\x07 \x03(\x0b\x32\'.opentelemetry.proto.common.v1.KeyValue\x12\x1c\n\x14start_time_unix_nano\x18\x02 \x01(\x06\x12\x16\n\x0etime_unix_nano\x18\x03 \x01(\x06\x12\x13\n\tas_double\x18\x04 \x01(\x01H\x00\x12\x10\n\x06\x61s_int\x18\x06 \x01(\x10H\x00\x12;\n\texemplars\x18\x05 \x03(\x0b\x32(.opentelemetry.proto.metrics.v1.Exemplar\x12\r\n\x05\x66lags\x18\x08 \x01(\rB\x07\n\x05valueJ\x04\x08\x01\x10\x02\"\xe6\x02\n\x12HistogramDataPoint\x12;\n\nattributes\x18\t \x03(\x0b\x32\'.opentelemetry.proto.common.v1.KeyValue\x12\x1c\n\x14start_time_unix_nano\x18\x02 \x01(\x06\x12\x16\n\x0etime_unix_nano\x18\x03 \x01(\x06\x12\r\n\x05\x63ount\x18\x04 \x01(\x06\x12\x10\n\x03sum\x18\x05 \x01(\x01H\x00\x88\x01\x01\x12\x15\n\rbucket_counts\x18\x06 \x03(\x06\x12\x17\n\x0f\x65xplicit_bounds\x18\x07 \x03(\x01\x12;\n\texemplars\x18\x08 \x03(\x0b\x32(.opentelemetry.proto.metrics.v1.Exemplar\x12\r\n\x05\x66lags\x18\n \x01(\r\x12\x10\n\x03min\x18\x0b \x01(\x01H\x01\x88\x01\x01\x12\x10\n\x03max\x18\x0c \x01(\x01H\x02\x88\x01\x01\x42\x06\n\x04_sumB\x06\n\x04_minB\x06\n\x04_maxJ\x04\x08\x01\x10\x02\"\xda\x04\n\x1d\x45xponentialHistogramDataPoint\x12;\n\nattributes\x18\x01 \x03(\x0b\x32\'.opentelemetry.proto.common.v1.KeyValue\x12\x1c\n\x14start_time_unix_nano\x18\x02 \x01(\x06\x12\x16\n\x0etime_unix_nano\x18\x03 \x01(\x06\x12\r\n\x05\x63ount\x18\x04 \x01(\x06\x12\x10\n\x03sum\x18\x05 \x01(\x01H\x00\x88\x01\x01\x12\r\n\x05scale\x18\x06 \x01(\x11\x12\x12\n\nzero_count\x18\x07 \x01(\x06\x12W\n\x08positive\x18\x08 \x01(\x0b\x32\x45.opentelemetry.proto.metrics.v1.ExponentialHistogramDataPoint.Buckets\x12W\n\x08negative\x18\t \x01(\x0b\x32\x45.opentelemetry.proto.metrics.v1.ExponentialHistogramDataPoint.Buckets\x12\r\n\x05\x66lags\x18\n \x01(\r\x12;\n\texemplars\x18\x0b \x03(\x0b\x32(.opentelemetry.proto.metrics.v1.Exemplar\x12\x10\n\x03min\x18\x0c \x01(\x01H\x01\x88\x01\x01\x12\x10\n\x03max\x18\r \x01(\x01H\x02\x88\x01\x01\x12\x16\n\x0ezero_threshold\x18\x0e \x01(\x01\x1a\x30\n\x07\x42uckets\x12\x0e\n\x06offset\x18\x01 \x01(\x11\x12\x15\n\rbucket_counts\x18\x02 \x03(\x04\x42\x06\n\x04_sumB\x06\n\x04_minB\x06\n\x04_max\"\xc5\x02\n\x10SummaryDataPoint\x12;\n\nattributes\x18\x07 \x03(\x0b\x32\'.opentelemetry.proto.common.v1.KeyValue\x12\x1c\n\x14start_time_unix_nano\x18\x02 \x01(\x06\x12\x16\n\x0etime_unix_nano\x18\x03 \x01(\x06\x12\r\n\x05\x63ount\x18\x04 \x01(\x06\x12\x0b\n\x03sum\x18\x05 \x01(\x01\x12Y\n\x0fquantile_values\x18\x06 \x03(\x0b\x32@.opentelemetry.proto.metrics.v1.SummaryDataPoint.ValueAtQuantile\x12\r\n\x05\x66lags\x18\x08 \x01(\r\x1a\x32\n\x0fValueAtQuantile\x12\x10\n\x08quantile\x18\x01 \x01(\x01\x12\r\n\x05value\x18\x02 \x01(\x01J\x04\x08\x01\x10\x02\"\xc1\x01\n\x08\x45xemplar\x12\x44\n\x13\x66iltered_attributes\x18\x07 \x03(\x0b\x32\'.opentelemetry.proto.common.v1.KeyValue\x12\x16\n\x0etime_unix_nano\x18\x02 \x01(\x06\x12\x13\n\tas_double\x18\x03 \x01(\x01H\x00\x12\x10\n\x06\x61s_int\x18\x06 \x01(\x10H\x00\x12\x0f\n\x07span_id\x18\x04 \x01(\x0c\x12\x10\n\x08trace_id\x18\x05 \x01(\x0c\x42\x07\n\x05valueJ\x04\x08\x01\x10\x02*\x8c\x01\n\x16\x41ggregationTemporality\x12\'\n#AGGREGATION_TEMPORALITY_UNSPECIFIED\x10\x00\x12!\n\x1d\x41GGREGATION_TEMPORALITY_DELTA\x10\x01\x12&\n\"AGGREGATION_TEMPORALITY_CUMULATIVE\x10\x02*^\n\x0e\x44\x61taPointFlags\x12\x1f\n\x1b\x44\x41TA_POINT_FLAGS_DO_NOT_USE\x10\x00\x12+\n\'DATA_POINT_FLAGS_NO_RECORDED_VALUE_MASK\x10\x01\x42\x7f\n!io.opentelemetry.proto.metrics.v1B\x0cMetricsProtoP\x01Z)go.opentelemetry.io/proto/otlp/metrics/v1\xaa\x02\x1eOpenTelemetry.Proto.Metrics.V1b\x06proto3" |
But, I believe some agents (Js?) just reduce this to monotonic
in the SDK, so there's precedent to go the other way.
metrics_sdk/.tool-versions
Outdated
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@garoazinha, would you mind removing this file? I think it snuck in on the last commit.
The is_monotonic flag for sum aggregation otlp model is required by the specs
The SDK should reject negative inputs to monotonic cumulative metrics, but it is not required to.
Implementations such as python and go appear to not enforce monotonicity, but the C++ and js implementations do.
js impl
C++ impl
Issue: #1783