Skip to content

siddharthurankar/regression

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

regression

GoDoc Go Report Card Build Status License

Multivariable Linear Regression in Go (golang)

installation

$ go get github.com/sajari/regression

Supports Go 1.8+

example usage

Import the package, create a regression and add data to it. You can use as many variables as you like, in the below example there are 3 variables for each observation.

package main

import (
	"fmt"

	"github.com/sajari/regression"
)

func main() {
	r := new(regression.Regression)
	r.SetObserved("Murders per annum per 1,000,000 inhabitants")
	r.SetVar(0, "Inhabitants")
	r.SetVar(1, "Percent with incomes below $5000")
	r.SetVar(2, "Percent unemployed")
	r.Train(
		regression.DataPoint(11.2, []float64{587000, 16.5, 6.2}),
		regression.DataPoint(13.4, []float64{643000, 20.5, 6.4}),
		regression.DataPoint(40.7, []float64{635000, 26.3, 9.3}),
		regression.DataPoint(5.3, []float64{692000, 16.5, 5.3}),
		regression.DataPoint(24.8, []float64{1248000, 19.2, 7.3}),
		regression.DataPoint(12.7, []float64{643000, 16.5, 5.9}),
		regression.DataPoint(20.9, []float64{1964000, 20.2, 6.4}),
		regression.DataPoint(35.7, []float64{1531000, 21.3, 7.6}),
		regression.DataPoint(8.7, []float64{713000, 17.2, 4.9}),
		regression.DataPoint(9.6, []float64{749000, 14.3, 6.4}),
		regression.DataPoint(14.5, []float64{7895000, 18.1, 6}),
		regression.DataPoint(26.9, []float64{762000, 23.1, 7.4}),
		regression.DataPoint(15.7, []float64{2793000, 19.1, 5.8}),
		regression.DataPoint(36.2, []float64{741000, 24.7, 8.6}),
		regression.DataPoint(18.1, []float64{625000, 18.6, 6.5}),
		regression.DataPoint(28.9, []float64{854000, 24.9, 8.3}),
		regression.DataPoint(14.9, []float64{716000, 17.9, 6.7}),
		regression.DataPoint(25.8, []float64{921000, 22.4, 8.6}),
		regression.DataPoint(21.7, []float64{595000, 20.2, 8.4}),
		regression.DataPoint(25.7, []float64{3353000, 16.9, 6.7}),
	)
	r.Run()

	fmt.Printf("Regression formula:\n%v\n", r.Formula)
	fmt.Printf("Regression:\n%s\n", r)
}

Note: You can also add data points one by one.

Once calculated you can print the data, look at the R^2, Variance, residuals, etc. You can also access the coefficients directly to use elsewhere, e.g.

// Get the coefficient for the "Inhabitants" variable 0:
c := r.Coeff(0)

You can also use the model to predict new data points

prediction, err := r.Predict([]float64{587000, 16.5, 6.2})

Feature crosses are supported so your model can capture fixed non-linear relationships

r.Train(
  regression.DataPoint(11.2, []float64{587000, 16.5, 6.2}),
)
//Add a new feature which is the first variable (index 0) to the power of 2
r.AddCross(PowCross(0, 2))
r.Run()

About

Multivariable regression library in Go

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Go 50.8%
  • R 49.2%