-
Notifications
You must be signed in to change notification settings - Fork 16
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[TUTORIAL] Add the non-persistent softmax and make it for CPU #22
Conversation
Thanks, Minjang! Interesting numbers. I'm surprised that TritonCPU is quite close to the native torch without any optimizations added for the CPU so far. Can we also have a torch-inductor column in addition to torch-native and torch-jit on CPU? For GPU it's probably not relevant because it's also Triton based but for CPU it's something we want to be compared to. |
6ceba1b
to
2e92d57
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks for adding Torch Inductor!
…-lang#22) * [TUTORIAL] Add 02-fused-softmax with the previous non-persistent implementation * Add torch.compile cases * Preallocate output buffer for softmax tutorial
When running [convert_blocked1d_to_slice0](https://github.com/triton-lang/triton/blob/0ba5f0c3cd029d5c3d1f01b9bf29dac32c27345e/test/Conversion/tritongpu_to_llvm.mlir#L924) Triton ends up computing a rank of a matrix with 0 columns during linear layout lowering, which trips up f2reduce, and causes undefined behavior, detectable through [UBSAN](https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html). Fix this by returning the rank (0) early in these cases, without calling f2reduce. <details><summary>Stack trace</summary> <p> ``` third_party/triton/third_party/f2reduce/f2reduce.cpp:421:30: runtime error: shift exponent 18446744073709551615 is too large for 64-bit type 'unsigned long long' #0 0x556ee2fea3be in inplace_rref_small third_party/triton/third_party/f2reduce/f2reduce.cpp:421:30 #1 0x556ee2fea3be in f2reduce::inplace_rref_strided(unsigned long*, unsigned long, unsigned long, unsigned long) third_party/triton/third_party/f2reduce/f2reduce.cpp:470:9 #2 0x556ee2ea70da in getMatrixRank third_party/triton/lib/Tools/LinearLayout.cpp:125:3 #3 0x556ee2ea70da in mlir::triton::LinearLayout::checkInvariants(bool) third_party/triton/lib/Tools/LinearLayout.cpp:299:7 #4 0x556ee2ea656d in mlir::triton::LinearLayout::tryCreate(llvm::MapVector<mlir::StringAttr, std::__u::vector<std::__u::vector<int, std::__u::allocator<int>>, std::__u::allocator<std::__u::vector<int, std::__u::allocator<int>>>>, llvm::DenseMap<mlir::StringAttr, unsigned int, llvm::DenseMapInfo<mlir::StringAttr, void>, llvm::detail::DenseMapPair<mlir::StringAttr, unsigned int>>, llvm::SmallVector<std::__u::pair<mlir::StringAttr, std::__u::vector<std::__u::vector<int, std::__u::allocator<int>>, std::__u::allocator<std::__u::vector<int, std::__u::allocator<int>>>>>, 0u>>, llvm::ArrayRef<std::__u::pair<mlir::StringAttr, int>>, bool) third_party/triton/lib/Tools/LinearLayout.cpp:190:41 #5 0x556ee2eb2150 in mlir::triton::LinearLayout::divideRight(mlir::triton::LinearLayout const&) third_party/triton/lib/Tools/LinearLayout.cpp:654:51 #6 0x556ee2ee1c39 in mlir::cvtNeedsSharedMemory(mlir::RankedTensorType, mlir::RankedTensorType) third_party/triton/lib/Analysis/Utility.cpp:652:14 #7 0x556ee2cf38fd in mlir::triton::getRepShapeForCvtLayout(mlir::triton::gpu::ConvertLayoutOp) third_party/triton/lib/Analysis/Allocation.cpp:66:8 #8 0x556ee2cf3efa in mlir::triton::getScratchConfigForCvtLayout(mlir::triton::gpu::ConvertLayoutOp, unsigned int&, unsigned int&) third_party/triton/lib/Analysis/Allocation.cpp:95:19 #9 0x556ee2cf6057 in mlir::triton::AllocationAnalysis::getScratchValueSize(mlir::Operation*) third_party/triton/lib/Analysis/Allocation.cpp:272:24 #10 0x556ee2cf5499 in operator() third_party/triton/lib/Analysis/Allocation.cpp:343:7 #11 0x556ee2cf5499 in void llvm::function_ref<void (mlir::Operation*)>::callback_fn<mlir::triton::AllocationAnalysis::getValuesAndSizes()::'lambda'(mlir::Operation*)>(long, mlir::Operation*) third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h:45:12 #12 0x556edeeee7a9 in operator() third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLFunctionalExtras.h:68:12 #13 0x556edeeee7a9 in void mlir::detail::walk<mlir::ForwardIterator>(mlir::Operation*, llvm::function_ref<void (mlir::Operation*)>, mlir::WalkOrder) third_party/llvm/llvm-project/mlir/include/mlir/IR/Visitors.h:174:5 #14 0x556edeeee87c in void mlir::detail::walk<mlir::ForwardIterator>(mlir::Operation*, llvm::function_ref<void (mlir::Operation*)>, mlir::WalkOrder) third_party/llvm/llvm-project/mlir/include/mlir/IR/Visitors.h:182:9 #15 0x556ee2cf49e7 in walk<(mlir::WalkOrder)0, mlir::ForwardIterator, (lambda at third_party/triton/lib/Analysis/Allocation.cpp:341:42), mlir::Operation *, void> third_party/llvm/llvm-project/mlir/include/mlir/IR/Visitors.h:313:10 #16 0x556ee2cf49e7 in walk<(mlir::WalkOrder)0, mlir::ForwardIterator, (lambda at third_party/triton/lib/Analysis/Allocation.cpp:341:42), void> third_party/llvm/llvm-project/mlir/include/mlir/IR/Operation.h:794:12 #17 0x556ee2cf49e7 in mlir::triton::AllocationAnalysis::getValuesAndSizes() third_party/triton/lib/Analysis/Allocation.cpp:341:16 #18 0x556ee2cf4852 in run third_party/triton/lib/Analysis/Allocation.cpp:182:5 #19 0x556ee2cf4852 in AllocationAnalysis third_party/triton/lib/Analysis/Allocation.cpp:169:5 #20 0x556ee2cf4852 in mlir::Allocation::run(llvm::DenseMap<mlir::FunctionOpInterface, mlir::Allocation, llvm::DenseMapInfo<mlir::FunctionOpInterface, void>, llvm::detail::DenseMapPair<mlir::FunctionOpInterface, mlir::Allocation>>&) third_party/triton/lib/Analysis/Allocation.cpp:627:3 #21 0x556ee1677402 in operator() third_party/triton/include/triton/Analysis/Allocation.h:227:26 #22 0x556ee1677402 in void mlir::CallGraph<mlir::Allocation>::doWalk<(mlir::WalkOrder)0, (mlir::WalkOrder)1, mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp)::'lambda'(mlir::CallOpInterface, mlir::FunctionOpInterface), mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp)::'lambda'(mlir::FunctionOpInterface)>(mlir::FunctionOpInterface, llvm::DenseSet<mlir::FunctionOpInterface, llvm::DenseMapInfo<mlir::FunctionOpInterface, void>>&, mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp)::'lambda'(mlir::CallOpInterface, mlir::FunctionOpInterface), mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp)::'lambda'(mlir::FunctionOpInterface)) third_party/triton/include/triton/Analysis/Utility.h:350:7 #23 0x556ee16756b3 in walk<(mlir::WalkOrder)0, (mlir::WalkOrder)1, (lambda at third_party/triton/include/triton/Analysis/Allocation.h:222:9), (lambda at third_party/triton/include/triton/Analysis/Allocation.h:224:9)> third_party/triton/include/triton/Analysis/Utility.h:242:7 #24 0x556ee16756b3 in mlir::ModuleAllocation::ModuleAllocation(mlir::ModuleOp) third_party/triton/include/triton/Analysis/Allocation.h:220:5 #25 0x556ee2c2bf18 in (anonymous namespace)::AllocateSharedMemory::runOnOperation() third_party/triton/lib/Conversion/TritonGPUToLLVM/AllocateSharedMemory.cpp:26:22 ... UndefinedBehaviorSanitizer: invalid-shift-exponent third_party/triton/third_party/f2reduce/f2reduce.cpp:421:30 ``` </p> </details>
* [TUTORIAL] Add 02-fused-softmax with the previous non-persistent implementation * Add torch.compile cases * Preallocate output buffer for softmax tutorial
…-lang#22) * [TUTORIAL] Add 02-fused-softmax with the previous non-persistent implementation * Add torch.compile cases * Preallocate output buffer for softmax tutorial
* [TUTORIAL] Add 02-fused-softmax with the previous non-persistent implementation * Add torch.compile cases * Preallocate output buffer for softmax tutorial
* [TUTORIAL] Add 02-fused-softmax with the previous non-persistent implementation * Add torch.compile cases * Preallocate output buffer for softmax tutorial
* [TUTORIAL] Add 02-fused-softmax with the previous non-persistent implementation * Add torch.compile cases * Preallocate output buffer for softmax tutorial
* [TUTORIAL] Add 02-fused-softmax with the previous non-persistent implementation * Add torch.compile cases * Preallocate output buffer for softmax tutorial
* [TUTORIAL] Add 02-fused-softmax with the previous non-persistent implementation * Add torch.compile cases * Preallocate output buffer for softmax tutorial
* [TUTORIAL] Add 02-fused-softmax with the previous non-persistent implementation * Add torch.compile cases * Preallocate output buffer for softmax tutorial
The updated fused-softmax has only persistent thread approach, which isn't straightforward for CPU. So, at least for now, bring back the old version and make it for CPU.